commit 1afecfd051a80b1356d693785c7f46c871ba7cc6 Author: Charles95 Date: Thu Sep 26 10:17:28 2024 +0000 first commit diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..3fc40c7 --- /dev/null +++ b/.gitattributes @@ -0,0 +1,37 @@ +*.7z filter=lfs diff=lfs merge=lfs -text +*.arrow filter=lfs diff=lfs merge=lfs -text +*.bin filter=lfs diff=lfs merge=lfs -text +*.bz2 filter=lfs diff=lfs merge=lfs -text +*.ckpt filter=lfs diff=lfs merge=lfs -text +*.ftz filter=lfs diff=lfs merge=lfs -text +*.gz filter=lfs diff=lfs merge=lfs -text +*.h5 filter=lfs diff=lfs merge=lfs -text +*.joblib filter=lfs diff=lfs merge=lfs -text +*.lfs.* filter=lfs diff=lfs merge=lfs -text +*.mlmodel filter=lfs diff=lfs merge=lfs -text +*.model filter=lfs diff=lfs merge=lfs -text +*.msgpack filter=lfs diff=lfs merge=lfs -text +*.npy filter=lfs diff=lfs merge=lfs -text +*.npz filter=lfs diff=lfs merge=lfs -text +*.onnx filter=lfs diff=lfs merge=lfs -text +*.ot filter=lfs diff=lfs merge=lfs -text +*.parquet filter=lfs diff=lfs merge=lfs -text +*.pb filter=lfs diff=lfs merge=lfs -text +*.pickle filter=lfs diff=lfs merge=lfs -text +*.pkl filter=lfs diff=lfs merge=lfs -text +*.pt filter=lfs diff=lfs merge=lfs -text +*.pth filter=lfs diff=lfs merge=lfs -text +*.rar filter=lfs diff=lfs merge=lfs -text +*.safetensors filter=lfs diff=lfs merge=lfs -text +saved_model/**/* filter=lfs diff=lfs merge=lfs -text +*.tar.* filter=lfs diff=lfs merge=lfs -text +*.tar filter=lfs diff=lfs merge=lfs -text +*.tflite filter=lfs diff=lfs merge=lfs -text +*.tgz filter=lfs diff=lfs merge=lfs -text +*.wasm filter=lfs diff=lfs merge=lfs -text +*.xz filter=lfs diff=lfs merge=lfs -text +*.zip filter=lfs diff=lfs merge=lfs -text +*.zst filter=lfs diff=lfs merge=lfs -text +*tfevents* filter=lfs diff=lfs merge=lfs -text +tokenizer.json filter=lfs diff=lfs merge=lfs -text +onnx/model.onnx_data filter=lfs diff=lfs merge=lfs -text diff --git a/README.md b/README.md new file mode 100644 index 0000000..0222c6a --- /dev/null +++ b/README.md @@ -0,0 +1,527 @@ +--- +license: mit +language: +- en +- zh +tags: +- mteb +model-index: +- name: bge-reranker-base + results: + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv1-reranking + name: MTEB CMedQAv1 + config: default + split: test + revision: None + metrics: + - type: map + value: 81.27206722525007 + - type: mrr + value: 84.14238095238095 + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv2-reranking + name: MTEB CMedQAv2 + config: default + split: test + revision: None + metrics: + - type: map + value: 84.10369934291236 + - type: mrr + value: 86.79376984126984 + - task: + type: Reranking + dataset: + type: C-MTEB/Mmarco-reranking + name: MTEB MMarcoReranking + config: default + split: dev + revision: None + metrics: + - type: map + value: 35.4600511272538 + - type: mrr + value: 34.60238095238095 + - task: + type: Reranking + dataset: + type: C-MTEB/T2Reranking + name: MTEB T2Reranking + config: default + split: dev + revision: None + metrics: + - type: map + value: 67.27728847727172 + - type: mrr + value: 77.1315192743764 +pipeline_tag: feature-extraction +--- + +**We have updated the [new reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), supporting larger lengths, more languages, and achieving better performance.** + +

FlagEmbedding

+ + +

+

+ Model List | + FAQ | + Usage | + Evaluation | + Train | + Citation | + License +

+

+ +**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).** + + +[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) + + +FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: + +- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon) +- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) +- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding) +- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) +- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) + +## News +- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation. +- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data. +- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). +It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks. +[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire: +- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire: +- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) +- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: +- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) +- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released +- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released +- 09/12/2023: New models: + - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. + - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. + + +
+ More + + +- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. +- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). +- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** +- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: +- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. + +
+ + +## Model List + +`bge` is short for `BAAI general embedding`. + +| Model | Language | | Description | query instruction for retrieval [1] | +|:-------------------------------|:--------:| :--------:| :--------:|:--------:| +| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | +| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | +| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | +| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | +| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | +| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | +| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | + + +[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. + +[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. +For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. + +All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. +If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . + + +## Frequently asked questions + +
+ 1. How to fine-tune bge embedding model? + + +Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. +Some suggestions: +- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. +- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. +- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. + Hard negatives also are needed to fine-tune reranker. Refer to this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) for the fine-tuning for reranker + + +
+ +
+ 2. The similarity score between two dissimilar sentences is higher than 0.5 + + +**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** + +Since we finetune the models by contrastive learning with a temperature of 0.01, +the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. +So a similarity score greater than 0.5 does not indicate that the two sentences are similar. + +For downstream tasks, such as passage retrieval or semantic similarity, +**what matters is the relative order of the scores, not the absolute value.** +If you need to filter similar sentences based on a similarity threshold, +please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). + +
+ +
+ 3. When does the query instruction need to be used + + + +For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. +No instruction only has a slight degradation in retrieval performance compared with using instruction. +So you can generate embedding without instruction in all cases for convenience. + +For a retrieval task that uses short queries to find long related documents, +it is recommended to add instructions for these short queries. +**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** +In all cases, the documents/passages do not need to add the instruction. + +
+ + +## Usage + +### Usage for Embedding Model + +Here are some examples for using `bge` models with +[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). + +#### Using FlagEmbedding +``` +pip install -U FlagEmbedding +``` +If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. + +```python +from FlagEmbedding import FlagModel +sentences_1 = ["样例数据-1", "样例数据-2"] +sentences_2 = ["样例数据-3", "样例数据-4"] +model = FlagModel('BAAI/bge-large-zh-v1.5', + query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", + use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation +embeddings_1 = model.encode(sentences_1) +embeddings_2 = model.encode(sentences_2) +similarity = embeddings_1 @ embeddings_2.T +print(similarity) + +# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query +# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction +queries = ['query_1', 'query_2'] +passages = ["样例文档-1", "样例文档-2"] +q_embeddings = model.encode_queries(queries) +p_embeddings = model.encode(passages) +scores = q_embeddings @ p_embeddings.T +``` +For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). + +By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. +You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. + + +#### Using Sentence-Transformers + +You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): + +``` +pip install -U sentence-transformers +``` +```python +from sentence_transformers import SentenceTransformer +sentences_1 = ["样例数据-1", "样例数据-2"] +sentences_2 = ["样例数据-3", "样例数据-4"] +model = SentenceTransformer('BAAI/bge-large-zh-v1.5') +embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) +embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) +similarity = embeddings_1 @ embeddings_2.T +print(similarity) +``` +For s2p(short query to long passage) retrieval task, +each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). +But the instruction is not needed for passages. +```python +from sentence_transformers import SentenceTransformer +queries = ['query_1', 'query_2'] +passages = ["样例文档-1", "样例文档-2"] +instruction = "为这个句子生成表示以用于检索相关文章:" + +model = SentenceTransformer('BAAI/bge-large-zh-v1.5') +q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) +p_embeddings = model.encode(passages, normalize_embeddings=True) +scores = q_embeddings @ p_embeddings.T +``` + +#### Using Langchain + +You can use `bge` in langchain like this: +```python +from langchain.embeddings import HuggingFaceBgeEmbeddings +model_name = "BAAI/bge-large-en-v1.5" +model_kwargs = {'device': 'cuda'} +encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity +model = HuggingFaceBgeEmbeddings( + model_name=model_name, + model_kwargs=model_kwargs, + encode_kwargs=encode_kwargs, + query_instruction="为这个句子生成表示以用于检索相关文章:" +) +model.query_instruction = "为这个句子生成表示以用于检索相关文章:" +``` + + +#### Using HuggingFace Transformers + +With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. + +```python +from transformers import AutoTokenizer, AutoModel +import torch +# Sentences we want sentence embeddings for +sentences = ["样例数据-1", "样例数据-2"] + +# Load model from HuggingFace Hub +tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') +model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') +model.eval() + +# Tokenize sentences +encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') +# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) +# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') + +# Compute token embeddings +with torch.no_grad(): + model_output = model(**encoded_input) + # Perform pooling. In this case, cls pooling. + sentence_embeddings = model_output[0][:, 0] +# normalize embeddings +sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) +print("Sentence embeddings:", sentence_embeddings) +``` + +### Usage for Reranker + +Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. +You can get a relevance score by inputting query and passage to the reranker. +The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. + + +#### Using FlagEmbedding +``` +pip install -U FlagEmbedding +``` + +Get relevance scores (higher scores indicate more relevance): +```python +from FlagEmbedding import FlagReranker +reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation + +score = reranker.compute_score(['query', 'passage']) +print(score) + +scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) +print(scores) +``` + + +#### Using Huggingface transformers + +```python +import torch +from transformers import AutoModelForSequenceClassification, AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') +model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') +model.eval() + +pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] +with torch.no_grad(): + inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) + scores = model(**inputs, return_dict=True).logits.view(-1, ).float() + print(scores) +``` + +#### Usage reranker with the ONNX files + +```python +from optimum.onnxruntime import ORTModelForSequenceClassification # type: ignore + +import torch +from transformers import AutoModelForSequenceClassification, AutoTokenizer + +tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') +model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base') +model_ort = ORTModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base', file_name="onnx/model.onnx") + +# Sentences we want sentence embeddings for +pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] + +# Tokenize sentences +encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt') + +scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float() +# Compute token embeddings +with torch.inference_mode(): + scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float() + +# scores and scores_ort are identical +``` +#### Usage reranker with infinity + +Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package. +```python +import asyncio +from infinity_emb import AsyncEmbeddingEngine, EngineArgs + +query='what is a panda?' +docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."] + +engine = AsyncEmbeddingEngine.from_args( + EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx +)) + +async def main(): + async with engine: + ranking, usage = await engine.rerank(query=query, docs=docs) + print(list(zip(ranking, docs))) +asyncio.run(main()) +``` + +## Evaluation + +`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** +For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). + +- **MTEB**: + +| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | +|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| +| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | +| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | +| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | +| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | +| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | +| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | +| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | +| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | +| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | +| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | +| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | +| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | +| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | +| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | +| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | +| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | +| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | + + + +- **C-MTEB**: +We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. +Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. + +| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | +|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| +| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | +| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | +| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | +| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | +| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | +| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | +| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | +| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | +| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | +| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | +| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | +| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | +| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | +| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | +| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | +| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | + + +- **Reranking**: +See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. + +| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | +|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| +| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | +| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | +| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | +| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | +| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | +| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | +| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | +| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | +| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | +| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | + +\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks + +## Train + +### BAAI Embedding + +We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. +**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** +We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). +Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. +More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). + + + +### BGE Reranker + +Cross-encoder will perform full-attention over the input pair, +which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. +Therefore, it can be used to re-rank the top-k documents returned by embedding model. +We train the cross-encoder on a multilingual pair data, +The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). +More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) + + + +## Citation + +If you find this repository useful, please consider giving a star :star: and citation + +``` +@misc{bge_embedding, + title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, + author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, + year={2023}, + eprint={2309.07597}, + archivePrefix={arXiv}, + primaryClass={cs.CL} +} +``` + +## License +FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge. \ No newline at end of file diff --git a/config.json b/config.json new file mode 100644 index 0000000..bb100d3 --- /dev/null +++ b/config.json @@ -0,0 +1,34 @@ +{ + "_name_or_path": "xlm-roberta-large", + "architectures": [ + "XLMRobertaForSequenceClassification" + ], + "attention_probs_dropout_prob": 0.1, + "bos_token_id": 0, + "classifier_dropout": null, + "eos_token_id": 2, + "hidden_act": "gelu", + "hidden_dropout_prob": 0.1, + "hidden_size": 1024, + "id2label": { + "0": "LABEL_0" + }, + "initializer_range": 0.02, + "intermediate_size": 4096, + "label2id": { + "LABEL_0": 0 + }, + "layer_norm_eps": 1e-05, + "max_position_embeddings": 514, + "model_type": "xlm-roberta", + "num_attention_heads": 16, + "num_hidden_layers": 24, + "output_past": true, + "pad_token_id": 1, + "position_embedding_type": "absolute", + "torch_dtype": "float32", + "transformers_version": "4.30.0", + "type_vocab_size": 1, + "use_cache": true, + "vocab_size": 250002 +} diff --git a/model.safetensors b/model.safetensors new file mode 100644 index 0000000..7310a31 --- /dev/null +++ b/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c5ae4e262c60ed2fb507ec587358285377ec36ee0a2e6da029f0534272b06d36 +size 2239618772 diff --git a/onnx/model.onnx b/onnx/model.onnx new file mode 100644 index 0000000..282901b --- /dev/null +++ b/onnx/model.onnx @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0528834a83cbe4b37fd20a887dd8f3dbdc6d924ffaaab51278d0a05364410117 +size 618476 diff --git a/onnx/model.onnx_data b/onnx/model.onnx_data new file mode 100644 index 0000000..e7815a2 --- /dev/null +++ b/onnx/model.onnx_data @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e88670fb90657362754eee65d1e29ea14689dab61caca572051db8f6e5d9109c +size 2239565824 diff --git a/pytorch_model.bin b/pytorch_model.bin new file mode 100644 index 0000000..559a41b --- /dev/null +++ b/pytorch_model.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62129e841464da714b961eb0bbbeb48c0f0b5f67e657902aaa3befcff6b3dab3 +size 2239705845 diff --git a/sentencepiece.bpe.model b/sentencepiece.bpe.model new file mode 100644 index 0000000..7a3f40a --- /dev/null +++ b/sentencepiece.bpe.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865 +size 5069051 diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000..68171d1 --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,15 @@ +{ + "bos_token": "", + "cls_token": "", + "eos_token": "", + "mask_token": { + "content": "", + "lstrip": true, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "sep_token": "", + "unk_token": "" +} diff --git a/tokenizer.json b/tokenizer.json new file mode 100644 index 0000000..a128fc2 --- /dev/null +++ b/tokenizer.json @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9eb652ac4e40cc093272bbbe0f55d521cf67570060227109b5cdc20945a4489e +size 17098107 diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000..0592146 --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,20 @@ +{ + "bos_token": "", + "clean_up_tokenization_spaces": true, + "cls_token": "", + "eos_token": "", + "mask_token": { + "__type": "AddedToken", + "content": "", + "lstrip": true, + "normalized": true, + "rstrip": false, + "single_word": false + }, + "model_max_length": 512, + "pad_token": "", + "sep_token": "", + "sp_model_kwargs": {}, + "tokenizer_class": "XLMRobertaTokenizer", + "unk_token": "" +}