forked from ailab/InternVL2-2B
120 lines
5.4 KiB
Python
120 lines
5.4 KiB
Python
# --------------------------------------------------------
|
|
# InternVL
|
|
# Copyright (c) 2024 OpenGVLab
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# --------------------------------------------------------
|
|
import os
|
|
from typing import Union
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class InternVisionConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
|
|
instantiate a vision encoder according to the specified arguments, defining the model architecture.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
Args:
|
|
num_channels (`int`, *optional*, defaults to 3):
|
|
Number of color channels in the input images (e.g., 3 for RGB).
|
|
patch_size (`int`, *optional*, defaults to 14):
|
|
The size (resolution) of each patch.
|
|
image_size (`int`, *optional*, defaults to 224):
|
|
The size (resolution) of each image.
|
|
qkv_bias (`bool`, *optional*, defaults to `False`):
|
|
Whether to add a bias to the queries and values in the self-attention layers.
|
|
hidden_size (`int`, *optional*, defaults to 3200):
|
|
Dimensionality of the encoder layers and the pooler layer.
|
|
num_attention_heads (`int`, *optional*, defaults to 25):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
intermediate_size (`int`, *optional*, defaults to 12800):
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
qk_normalization (`bool`, *optional*, defaults to `True`):
|
|
Whether to normalize the queries and keys in the self-attention layers.
|
|
num_hidden_layers (`int`, *optional*, defaults to 48):
|
|
Number of hidden layers in the Transformer encoder.
|
|
use_flash_attn (`bool`, *optional*, defaults to `True`):
|
|
Whether to use flash attention mechanism.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
|
The epsilon used by the layer normalization layers.
|
|
dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
|
Dropout rate for stochastic depth.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
initializer_factor (`float`, *optional*, defaults to 0.1):
|
|
A factor for layer scale.
|
|
"""
|
|
|
|
model_type = 'intern_vit_6b'
|
|
|
|
def __init__(
|
|
self,
|
|
num_channels=3,
|
|
patch_size=14,
|
|
image_size=224,
|
|
qkv_bias=False,
|
|
hidden_size=3200,
|
|
num_attention_heads=25,
|
|
intermediate_size=12800,
|
|
qk_normalization=True,
|
|
num_hidden_layers=48,
|
|
use_flash_attn=True,
|
|
hidden_act='gelu',
|
|
norm_type='rms_norm',
|
|
layer_norm_eps=1e-6,
|
|
dropout=0.0,
|
|
drop_path_rate=0.0,
|
|
attention_dropout=0.0,
|
|
initializer_range=0.02,
|
|
initializer_factor=0.1,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.drop_path_rate = drop_path_rate
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.initializer_range = initializer_range
|
|
self.initializer_factor = initializer_factor
|
|
self.attention_dropout = attention_dropout
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.norm_type = norm_type
|
|
self.qkv_bias = qkv_bias
|
|
self.qk_normalization = qk_normalization
|
|
self.use_flash_attn = use_flash_attn
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
if 'vision_config' in config_dict:
|
|
config_dict = config_dict['vision_config']
|
|
|
|
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
|
|
logger.warning(
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
|
|
)
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|