forked from ailab/InternVL2-2B
430 lines
18 KiB
Python
430 lines
18 KiB
Python
# --------------------------------------------------------
|
|
# InternVL
|
|
# Copyright (c) 2024 OpenGVLab
|
|
# Licensed under The MIT License [see LICENSE for details]
|
|
# --------------------------------------------------------
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from einops import rearrange
|
|
from timm.models.layers import DropPath
|
|
from torch import nn
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import (BaseModelOutput,
|
|
BaseModelOutputWithPooling)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import logging
|
|
|
|
from .configuration_intern_vit import InternVisionConfig
|
|
|
|
try:
|
|
from flash_attn.bert_padding import pad_input, unpad_input
|
|
from flash_attn.flash_attn_interface import \
|
|
flash_attn_varlen_qkvpacked_func
|
|
has_flash_attn = True
|
|
except:
|
|
print('FlashAttention2 is not installed.')
|
|
has_flash_attn = False
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class FlashAttention(nn.Module):
|
|
"""Implement the scaled dot product attention with softmax.
|
|
Arguments
|
|
---------
|
|
softmax_scale: The temperature to use for the softmax attention.
|
|
(default: 1/sqrt(d_keys) where d_keys is computed at
|
|
runtime)
|
|
attention_dropout: The dropout rate to apply to the attention
|
|
(default: 0.0)
|
|
"""
|
|
|
|
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
|
super().__init__()
|
|
self.softmax_scale = softmax_scale
|
|
self.dropout_p = attention_dropout
|
|
|
|
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
|
max_s=None, need_weights=False):
|
|
"""Implements the multihead softmax attention.
|
|
Arguments
|
|
---------
|
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
|
if unpadded: (nnz, 3, h, d)
|
|
key_padding_mask: a bool tensor of shape (B, S)
|
|
"""
|
|
assert not need_weights
|
|
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
|
assert qkv.is_cuda
|
|
|
|
if cu_seqlens is None:
|
|
batch_size = qkv.shape[0]
|
|
seqlen = qkv.shape[1]
|
|
if key_padding_mask is None:
|
|
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
|
max_s = seqlen
|
|
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
|
device=qkv.device)
|
|
output = flash_attn_varlen_qkvpacked_func(
|
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
|
else:
|
|
nheads = qkv.shape[-2]
|
|
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
|
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
|
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
|
output_unpad = flash_attn_varlen_qkvpacked_func(
|
|
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
|
indices, batch_size, seqlen),
|
|
'b s (h d) -> b s h d', h=nheads)
|
|
else:
|
|
assert max_s is not None
|
|
output = flash_attn_varlen_qkvpacked_func(
|
|
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
|
softmax_scale=self.softmax_scale, causal=causal
|
|
)
|
|
|
|
return output, None
|
|
|
|
|
|
class InternRMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
|
|
try:
|
|
from apex.normalization import FusedRMSNorm
|
|
|
|
InternRMSNorm = FusedRMSNorm # noqa
|
|
|
|
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
|
except ImportError:
|
|
# using the normal InternRMSNorm
|
|
pass
|
|
except Exception:
|
|
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
|
pass
|
|
|
|
|
|
NORM2FN = {
|
|
'rms_norm': InternRMSNorm,
|
|
'layer_norm': nn.LayerNorm,
|
|
}
|
|
|
|
|
|
class InternVisionEmbeddings(nn.Module):
|
|
def __init__(self, config: InternVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.class_embedding = nn.Parameter(
|
|
torch.randn(1, 1, self.embed_dim),
|
|
)
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches + 1
|
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
|
|
|
def _get_pos_embed(self, pos_embed, H, W):
|
|
target_dtype = pos_embed.dtype
|
|
pos_embed = pos_embed.float().reshape(
|
|
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
|
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
|
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
|
return pos_embed
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
|
batch_size, _, height, width = patch_embeds.shape
|
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
|
position_embedding = torch.cat([
|
|
self.position_embedding[:, :1, :],
|
|
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
|
], dim=1)
|
|
embeddings = embeddings + position_embedding.to(target_dtype)
|
|
return embeddings
|
|
|
|
|
|
class InternAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: InternVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
|
if config.use_flash_attn and not has_flash_attn:
|
|
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
|
f' {self.num_heads}).'
|
|
)
|
|
|
|
self.scale = self.head_dim ** -0.5
|
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
|
self.attn_drop = nn.Dropout(config.attention_dropout)
|
|
self.proj_drop = nn.Dropout(config.dropout)
|
|
|
|
self.qk_normalization = config.qk_normalization
|
|
|
|
if self.qk_normalization:
|
|
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
if self.use_flash_attn:
|
|
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
|
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
def _naive_attn(self, x):
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
if self.qk_normalization:
|
|
B_, H_, N_, D_ = q.shape
|
|
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
|
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
|
|
|
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
|
qkv = self.qkv(x)
|
|
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
|
|
|
if self.qk_normalization:
|
|
q, k, v = qkv.unbind(2)
|
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
|
qkv = torch.stack([q, k, v], dim=2)
|
|
|
|
context, _ = self.inner_attn(
|
|
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
|
)
|
|
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
|
outs = self.proj_drop(outs)
|
|
return outs
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
|
return x
|
|
|
|
|
|
class InternMLP(nn.Module):
|
|
def __init__(self, config: InternVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.act = ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class InternVisionEncoderLayer(nn.Module):
|
|
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.norm_type = config.norm_type
|
|
|
|
self.attn = InternAttention(config)
|
|
self.mlp = InternMLP(config)
|
|
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
|
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
|
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
|
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
|
"""
|
|
Args:
|
|
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
"""
|
|
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
|
|
|
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class InternVisionEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`InternEncoderLayer`].
|
|
|
|
Args:
|
|
config (`InternConfig`):
|
|
The corresponding vision configuration for the `InternEncoder`.
|
|
"""
|
|
|
|
def __init__(self, config: InternVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
# stochastic depth decay rule
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
|
self.layers = nn.ModuleList([
|
|
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = True
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Embedded representation of the inputs. Should be float, not int tokens.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
hidden_states = inputs_embeds
|
|
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
encoder_layer,
|
|
hidden_states)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
)
|
|
hidden_states = layer_outputs
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states
|
|
)
|
|
|
|
|
|
class InternVisionModel(PreTrainedModel):
|
|
main_input_name = 'pixel_values'
|
|
_supports_flash_attn_2 = True
|
|
config_class = InternVisionConfig
|
|
_no_split_modules = ['InternVisionEncoderLayer']
|
|
|
|
def __init__(self, config: InternVisionConfig):
|
|
super().__init__(config)
|
|
self.config = config
|
|
|
|
self.embeddings = InternVisionEmbeddings(config)
|
|
self.encoder = InternVisionEncoder(config)
|
|
|
|
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
|
pos_emb = self.embeddings.position_embedding
|
|
_, num_positions, embed_dim = pos_emb.shape
|
|
cls_emb = pos_emb[:, :1, :]
|
|
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
|
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
|
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
|
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
|
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
|
self.embeddings.image_size = new_size
|
|
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
pixel_embeds: Optional[torch.FloatTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if pixel_values is None and pixel_embeds is None:
|
|
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
|
|
|
if pixel_embeds is not None:
|
|
hidden_states = pixel_embeds
|
|
else:
|
|
if len(pixel_values.shape) == 4:
|
|
hidden_states = self.embeddings(pixel_values)
|
|
else:
|
|
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
last_hidden_state = encoder_outputs.last_hidden_state
|
|
pooled_output = last_hidden_state[:, 0, :]
|
|
|
|
if not return_dict:
|
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|