first commit
This commit is contained in:
commit
ce68a491d5
|
@ -0,0 +1,34 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,148 @@
|
|||
---
|
||||
pipeline_tag: image-to-text
|
||||
tags:
|
||||
- image-captioning
|
||||
languages:
|
||||
- en
|
||||
license: bsd-3-clause
|
||||
---
|
||||
|
||||
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
||||
|
||||
Model card for image captioning pretrained on COCO dataset - base architecture (with ViT large backbone).
|
||||
|
||||
| ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) |
|
||||
|:--:|
|
||||
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
|
||||
|
||||
## TL;DR
|
||||
|
||||
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
|
||||
|
||||
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
||||
|
||||
## Usage
|
||||
|
||||
You can use this model for conditional and un-conditional image captioning
|
||||
|
||||
### Using the Pytorch model
|
||||
|
||||
#### Running the model on CPU
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
# conditional image captioning
|
||||
text = "a photography of"
|
||||
inputs = processor(raw_image, text, return_tensors="pt")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
```
|
||||
</details>
|
||||
|
||||
#### Running the model on GPU
|
||||
|
||||
##### In full precision
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
# conditional image captioning
|
||||
text = "a photography of"
|
||||
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
```
|
||||
</details>
|
||||
|
||||
##### In half precision (`float16`)
|
||||
|
||||
<details>
|
||||
<summary> Click to expand </summary>
|
||||
|
||||
```python
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
||||
|
||||
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
||||
|
||||
# conditional image captioning
|
||||
text = "a photography of"
|
||||
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
# >>> a photography of a woman and her dog
|
||||
|
||||
# unconditional image captioning
|
||||
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
||||
|
||||
out = model.generate(**inputs)
|
||||
print(processor.decode(out[0], skip_special_tokens=True))
|
||||
>>> a woman sitting on the beach with her dog
|
||||
```
|
||||
</details>
|
||||
|
||||
## BibTex and citation info
|
||||
|
||||
```
|
||||
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
||||
doi = {10.48550/ARXIV.2201.12086},
|
||||
|
||||
url = {https://arxiv.org/abs/2201.12086},
|
||||
|
||||
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
||||
|
||||
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
||||
|
||||
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
||||
|
||||
publisher = {arXiv},
|
||||
|
||||
year = {2022},
|
||||
|
||||
copyright = {Creative Commons Attribution 4.0 International}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,170 @@
|
|||
{
|
||||
"_commit_hash": null,
|
||||
"architectures": [
|
||||
"BlipForConditionalGeneration"
|
||||
],
|
||||
"image_text_hidden_size": 256,
|
||||
"initializer_factor": 1.0,
|
||||
"logit_scale_init_value": 2.6592,
|
||||
"model_type": "blip",
|
||||
"projection_dim": 512,
|
||||
"text_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": 30522,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"early_stopping": false,
|
||||
"encoder_hidden_size": 1024,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": 2,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_size": 768,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 3072,
|
||||
"is_decoder": true,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-12,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"max_position_embeddings": 512,
|
||||
"min_length": 0,
|
||||
"model_type": "blip_text_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 12,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_hidden_layers": 12,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": 0,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"projection_dim": 768,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": 102,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.26.0.dev0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false,
|
||||
"use_cache": true,
|
||||
"vocab_size": 30524
|
||||
},
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": null,
|
||||
"vision_config": {
|
||||
"_name_or_path": "",
|
||||
"add_cross_attention": false,
|
||||
"architectures": null,
|
||||
"attention_dropout": 0.0,
|
||||
"bad_words_ids": null,
|
||||
"begin_suppress_tokens": null,
|
||||
"bos_token_id": null,
|
||||
"chunk_size_feed_forward": 0,
|
||||
"cross_attention_hidden_size": null,
|
||||
"decoder_start_token_id": null,
|
||||
"diversity_penalty": 0.0,
|
||||
"do_sample": false,
|
||||
"dropout": 0.0,
|
||||
"early_stopping": false,
|
||||
"encoder_no_repeat_ngram_size": 0,
|
||||
"eos_token_id": null,
|
||||
"exponential_decay_length_penalty": null,
|
||||
"finetuning_task": null,
|
||||
"forced_bos_token_id": null,
|
||||
"forced_eos_token_id": null,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1024,
|
||||
"id2label": {
|
||||
"0": "LABEL_0",
|
||||
"1": "LABEL_1"
|
||||
},
|
||||
"image_size": 384,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"is_decoder": false,
|
||||
"is_encoder_decoder": false,
|
||||
"label2id": {
|
||||
"LABEL_0": 0,
|
||||
"LABEL_1": 1
|
||||
},
|
||||
"layer_norm_eps": 1e-05,
|
||||
"length_penalty": 1.0,
|
||||
"max_length": 20,
|
||||
"min_length": 0,
|
||||
"model_type": "blip_vision_model",
|
||||
"no_repeat_ngram_size": 0,
|
||||
"num_attention_heads": 16,
|
||||
"num_beam_groups": 1,
|
||||
"num_beams": 1,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"num_return_sequences": 1,
|
||||
"output_attentions": false,
|
||||
"output_hidden_states": false,
|
||||
"output_scores": false,
|
||||
"pad_token_id": null,
|
||||
"patch_size": 16,
|
||||
"prefix": null,
|
||||
"problem_type": null,
|
||||
"projection_dim": 512,
|
||||
"pruned_heads": {},
|
||||
"remove_invalid_values": false,
|
||||
"repetition_penalty": 1.0,
|
||||
"return_dict": true,
|
||||
"return_dict_in_generate": false,
|
||||
"sep_token_id": null,
|
||||
"suppress_tokens": null,
|
||||
"task_specific_params": null,
|
||||
"temperature": 1.0,
|
||||
"tf_legacy_loss": false,
|
||||
"tie_encoder_decoder": false,
|
||||
"tie_word_embeddings": true,
|
||||
"tokenizer_class": null,
|
||||
"top_k": 50,
|
||||
"top_p": 1.0,
|
||||
"torch_dtype": null,
|
||||
"torchscript": false,
|
||||
"transformers_version": "4.26.0.dev0",
|
||||
"typical_p": 1.0,
|
||||
"use_bfloat16": false
|
||||
}
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,25 @@
|
|||
{
|
||||
"do_normalize": true,
|
||||
"do_pad": true,
|
||||
"do_rescale": true,
|
||||
"do_resize": true,
|
||||
"image_mean": [
|
||||
0.48145466,
|
||||
0.4578275,
|
||||
0.40821073
|
||||
],
|
||||
"image_processor_type": "BlipImageProcessor",
|
||||
"image_std": [
|
||||
0.26862954,
|
||||
0.26130258,
|
||||
0.27577711
|
||||
],
|
||||
"processor_class": "BlipProcessor",
|
||||
"resample": 3,
|
||||
"rescale_factor": 0.00392156862745098,
|
||||
"size": {
|
||||
"height": 384,
|
||||
"width": 384
|
||||
},
|
||||
"size_divisor": 32
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,7 @@
|
|||
{
|
||||
"cls_token": "[CLS]",
|
||||
"mask_token": "[MASK]",
|
||||
"pad_token": "[PAD]",
|
||||
"sep_token": "[SEP]",
|
||||
"unk_token": "[UNK]"
|
||||
}
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,21 @@
|
|||
{
|
||||
"cls_token": "[CLS]",
|
||||
"do_basic_tokenize": true,
|
||||
"do_lower_case": true,
|
||||
"mask_token": "[MASK]",
|
||||
"model_max_length": 512,
|
||||
"name_or_path": "Salesforce/blip-image-captioning-large",
|
||||
"never_split": null,
|
||||
"pad_token": "[PAD]",
|
||||
"processor_class": "BlipProcessor",
|
||||
"sep_token": "[SEP]",
|
||||
"special_tokens_map_file": null,
|
||||
"strip_accents": null,
|
||||
"tokenize_chinese_chars": true,
|
||||
"tokenizer_class": "BertTokenizer",
|
||||
"unk_token": "[UNK]",
|
||||
"model_input_names": [
|
||||
"input_ids",
|
||||
"attention_mask"
|
||||
]
|
||||
}
|
Loading…
Reference in New Issue