151 lines
6.8 KiB
Python
151 lines
6.8 KiB
Python
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" InternLM2 model configuration"""
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
|
|
|
|
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
|
|
class InternLM2Config(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
|
|
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
|
|
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`InternLM2Model`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
|
Whether to tie weight embeddings
|
|
Example:
|
|
|
|
"""
|
|
model_type = 'internlm2'
|
|
_auto_class = 'AutoConfig'
|
|
|
|
def __init__( # pylint: disable=W0102
|
|
self,
|
|
vocab_size=103168,
|
|
hidden_size=4096,
|
|
intermediate_size=11008,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=None,
|
|
hidden_act='silu',
|
|
max_position_embeddings=2048,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=0,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
bias=True,
|
|
rope_theta=10000,
|
|
rope_scaling=None,
|
|
attn_implementation='eager',
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.bias = bias
|
|
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.rope_scaling = rope_scaling
|
|
self._rope_scaling_validation()
|
|
|
|
self.attn_implementation = attn_implementation
|
|
if self.attn_implementation is None:
|
|
self.attn_implementation = 'eager'
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
def _rope_scaling_validation(self):
|
|
"""
|
|
Validate the `rope_scaling` configuration.
|
|
"""
|
|
if self.rope_scaling is None:
|
|
return
|
|
|
|
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
|
raise ValueError(
|
|
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
|
f'got {self.rope_scaling}'
|
|
)
|
|
rope_scaling_type = self.rope_scaling.get('type', None)
|
|
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
|
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
|
raise ValueError(
|
|
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
|
)
|
|
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
|
|
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
|