599 lines
21 KiB
Python
599 lines
21 KiB
Python
# Copyright (c) Alibaba Cloud.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
"""Tokenization classes for QWen."""
|
|
|
|
import base64
|
|
import logging
|
|
import os
|
|
import requests
|
|
import unicodedata
|
|
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
|
|
|
|
import tiktoken
|
|
import numpy as np
|
|
from PIL import Image
|
|
from PIL import ImageFont
|
|
from PIL import ImageDraw
|
|
from transformers import PreTrainedTokenizer, AddedToken
|
|
from transformers.utils import try_to_load_from_cache
|
|
|
|
import matplotlib.colors as mcolors
|
|
from matplotlib.font_manager import FontProperties
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
|
|
FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
|
|
if FONT_PATH is None:
|
|
if not os.path.exists("SimSun.ttf"):
|
|
ttf = requests.get("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf")
|
|
open("SimSun.ttf", "wb").write(ttf.content)
|
|
FONT_PATH = "SimSun.ttf"
|
|
|
|
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
|
ENDOFTEXT = "<|endoftext|>"
|
|
IMSTART = "<|im_start|>"
|
|
IMEND = "<|im_end|>"
|
|
# as the default behavior is changed to allow special tokens in
|
|
# regular texts, the surface forms of special tokens need to be
|
|
# as different as possible to minimize the impact
|
|
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
|
SPECIAL_TOKENS = (
|
|
ENDOFTEXT,
|
|
IMSTART,
|
|
IMEND,
|
|
) + EXTRAS
|
|
IMG_TOKEN_SPAN = 256
|
|
|
|
|
|
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
|
with open(tiktoken_bpe_file, "rb") as f:
|
|
contents = f.read()
|
|
return {
|
|
base64.b64decode(token): int(rank)
|
|
for token, rank in (line.split() for line in contents.splitlines() if line)
|
|
}
|
|
|
|
def _list_find(
|
|
input_list: List[Any],
|
|
candidates: Tuple[Any],
|
|
start: int = 0,
|
|
):
|
|
for i in range(start, len(input_list)):
|
|
if input_list[i] in candidates:
|
|
return i
|
|
return -1
|
|
|
|
def _replace_closed_tag(
|
|
input_tokens: List[Any],
|
|
start_tags: Union[Any, Tuple[Any]],
|
|
end_tags: Union[Any, Tuple[Any]],
|
|
inclusive_replace_func: Callable,
|
|
exclusive_replace_func: Callable = lambda x: x,
|
|
):
|
|
if isinstance(start_tags, (str, int)):
|
|
start_tags = (start_tags,)
|
|
if isinstance(end_tags, (str, int)):
|
|
end_tags = (end_tags,)
|
|
assert len(start_tags) == len(end_tags)
|
|
|
|
output_tokens = []
|
|
end = 0
|
|
while True:
|
|
start = _list_find(input_tokens, start_tags, end)
|
|
if start == -1:
|
|
break
|
|
output_tokens.extend(exclusive_replace_func(input_tokens[end : start]))
|
|
tag_idx = start_tags.index(input_tokens[start])
|
|
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
|
if end == -1:
|
|
raise ValueError("Unclosed image token")
|
|
output_tokens.extend(inclusive_replace_func(input_tokens[start : end + 1]))
|
|
end += 1
|
|
output_tokens.extend(exclusive_replace_func(input_tokens[end : ]))
|
|
return output_tokens
|
|
|
|
class QWenTokenizer(PreTrainedTokenizer):
|
|
"""QWen tokenizer."""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
errors="replace",
|
|
image_start_tag='<img>',
|
|
image_end_tag='</img>',
|
|
image_pad_tag='<imgpad>',
|
|
ref_start_tag='<ref>',
|
|
ref_end_tag='</ref>',
|
|
box_start_tag='<box>',
|
|
box_end_tag='</box>',
|
|
quad_start_tag='<quad>',
|
|
quad_end_tag='</quad>',
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.image_start_tag = image_start_tag
|
|
self.image_end_tag = image_end_tag
|
|
self.image_pad_tag = image_pad_tag
|
|
self.ref_start_tag = ref_start_tag
|
|
self.ref_end_tag = ref_end_tag
|
|
self.box_start_tag = box_start_tag
|
|
self.box_end_tag = box_end_tag
|
|
self.quad_start_tag = quad_start_tag
|
|
self.quad_end_tag = quad_end_tag
|
|
self.IMAGE_ST = (
|
|
ref_start_tag, ref_end_tag,
|
|
box_start_tag, box_end_tag,
|
|
quad_start_tag, quad_end_tag,
|
|
image_start_tag, image_end_tag,
|
|
image_pad_tag
|
|
)
|
|
|
|
self.errors = errors # how to handle errors in decoding
|
|
|
|
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
|
self.special_tokens = {
|
|
token: index
|
|
for index, token in enumerate(
|
|
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
|
)
|
|
}
|
|
self.img_start_id = self.special_tokens[self.image_start_tag]
|
|
self.img_end_id = self.special_tokens[self.image_end_tag]
|
|
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
|
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
|
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
|
self.box_start_id = self.special_tokens[self.box_start_tag]
|
|
self.box_end_id = self.special_tokens[self.box_end_tag]
|
|
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
|
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
|
self.image_special_tokens = set([
|
|
self.ref_start_id, self.ref_end_id, self.box_start_id, self.box_end_id,
|
|
self.quad_start_id, self.quad_end_id,
|
|
])
|
|
|
|
enc = tiktoken.Encoding(
|
|
"Qwen",
|
|
pat_str=PAT_STR,
|
|
mergeable_ranks=self.mergeable_ranks,
|
|
special_tokens=self.special_tokens,
|
|
)
|
|
assert (
|
|
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
|
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
|
|
|
self.decoder = {
|
|
v: k for k, v in self.mergeable_ranks.items()
|
|
} # type: dict[int, bytes|str]
|
|
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
|
|
|
self.tokenizer = enc # type: tiktoken.Encoding
|
|
|
|
self.eod_id = self.tokenizer.eot_token
|
|
self.im_start_id = self.special_tokens[IMSTART]
|
|
self.im_end_id = self.special_tokens[IMEND]
|
|
|
|
def __getstate__(self):
|
|
# for pickle lovers
|
|
state = self.__dict__.copy()
|
|
del state['tokenizer']
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
# tokenizer is not python native; don't pass it; rebuild it
|
|
self.__dict__.update(state)
|
|
enc = tiktoken.Encoding(
|
|
"Qwen",
|
|
pat_str=PAT_STR,
|
|
mergeable_ranks=self.mergeable_ranks,
|
|
special_tokens=self.special_tokens,
|
|
)
|
|
self.tokenizer = enc
|
|
|
|
|
|
def __len__(self) -> int:
|
|
return self.tokenizer.n_vocab
|
|
|
|
def get_vocab(self) -> Dict[bytes, int]:
|
|
return self.mergeable_ranks
|
|
|
|
def convert_tokens_to_ids(
|
|
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
|
) -> List[int]:
|
|
ids = []
|
|
if isinstance(tokens, (str, bytes)):
|
|
if tokens in self.special_tokens:
|
|
return self.special_tokens[tokens]
|
|
else:
|
|
return self.mergeable_ranks.get(tokens)
|
|
for token in tokens:
|
|
if token in self.special_tokens:
|
|
ids.append(self.special_tokens[token])
|
|
else:
|
|
ids.append(self.mergeable_ranks.get(token))
|
|
return ids
|
|
|
|
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
|
if not special_tokens and new_tokens:
|
|
raise ValueError('Adding regular tokens is not supported')
|
|
for token in new_tokens:
|
|
surface_form = token.content if isinstance(token, AddedToken) else token
|
|
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
|
|
raise ValueError('Adding unknown special tokens is not supported')
|
|
return 0
|
|
|
|
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
|
"""
|
|
Save only the vocabulary of the tokenizer (vocabulary).
|
|
|
|
Returns:
|
|
`Tuple(str)`: Paths to the files saved.
|
|
"""
|
|
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
|
with open(file_path, "w", encoding="utf8") as w:
|
|
for k, v in self.mergeable_ranks.items():
|
|
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
|
w.write(line)
|
|
return (file_path,)
|
|
|
|
def tokenize(
|
|
self,
|
|
text: str,
|
|
allowed_special: Union[Set, str] = "all",
|
|
disallowed_special: Union[Collection, str] = (),
|
|
**kwargs,
|
|
) -> List[Union[bytes, str]]:
|
|
"""
|
|
Converts a string in a sequence of tokens.
|
|
|
|
Args:
|
|
text (`str`):
|
|
The sequence to be encoded.
|
|
allowed_special (`Literal["all"]` or `set`):
|
|
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
|
Default to "all".
|
|
disallowed_special (`Literal["all"]` or `Collection`):
|
|
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
|
Default to an empty tuple.
|
|
|
|
kwargs (additional keyword arguments, *optional*):
|
|
Will be passed to the underlying model specific encode method.
|
|
|
|
Returns:
|
|
`List[bytes|str]`: The list of tokens.
|
|
"""
|
|
tokens = []
|
|
text = unicodedata.normalize("NFC", text)
|
|
|
|
# this implementation takes a detour: text -> token id -> token surface forms
|
|
for t in self.tokenizer.encode(
|
|
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
|
):
|
|
tokens.append(self.decoder[t])
|
|
|
|
def _encode_imgurl(img_tokens):
|
|
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
|
img_tokens = img_tokens[1:-1]
|
|
img_url = b''.join(img_tokens)
|
|
out_img_tokens = list(map(self.decoder.get, img_url))
|
|
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
|
raise ValueError("The content in {}..{} is too long".format(
|
|
self.image_start_tag, self.image_end_tag))
|
|
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
|
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
|
return out_img_tokens
|
|
|
|
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
|
|
|
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
|
"""
|
|
Converts a sequence of tokens in a single string.
|
|
"""
|
|
text = ""
|
|
temp = b""
|
|
for t in tokens:
|
|
if isinstance(t, str):
|
|
if temp:
|
|
text += temp.decode("utf-8", errors=self.errors)
|
|
temp = b""
|
|
text += t
|
|
elif isinstance(t, bytes):
|
|
temp += t
|
|
else:
|
|
raise TypeError("token should only be of type types or str")
|
|
if temp:
|
|
text += temp.decode("utf-8", errors=self.errors)
|
|
return text
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.tokenizer.n_vocab
|
|
|
|
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
|
"""Converts an id to a token, special tokens included"""
|
|
if index in self.decoder:
|
|
return self.decoder[index]
|
|
raise ValueError("unknown ids")
|
|
|
|
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
|
"""Converts a token to an id using the vocab, special tokens included"""
|
|
if token in self.special_tokens:
|
|
return self.special_tokens[token]
|
|
if token in self.mergeable_ranks:
|
|
return self.mergeable_ranks[token]
|
|
raise ValueError("unknown token")
|
|
|
|
def _tokenize(self, text: str, **kwargs):
|
|
"""
|
|
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
|
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
|
|
|
Do NOT take care of added tokens.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _decode(
|
|
self,
|
|
token_ids: Union[int, List[int]],
|
|
skip_special_tokens: bool = False,
|
|
errors: str = None,
|
|
**kwargs,
|
|
) -> str:
|
|
if isinstance(token_ids, int):
|
|
token_ids = [token_ids]
|
|
|
|
def _decode_imgurl(img_token_ids):
|
|
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
|
img_token_ids = img_token_ids[1:-1]
|
|
img_token_ids = img_token_ids[ : img_token_ids.index(self.img_pad_id)]
|
|
img_url = bytes(img_token_ids).decode('utf-8')
|
|
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
|
|
|
|
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
|
|
|
if skip_special_tokens:
|
|
if kwargs.get('keep_image_special', False):
|
|
token_ids = [i for i in token_ids if i < self.eod_id
|
|
or i in self.image_special_tokens]
|
|
else:
|
|
token_ids = [i for i in token_ids if i < self.eod_id]
|
|
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
|
|
|
def to_list_format(self, text: str):
|
|
text = unicodedata.normalize("NFC", text)
|
|
token_ids = self.tokenizer.encode(
|
|
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
|
|
|
|
def _encode_vl_info(tokens):
|
|
if len(tokens) == 0:
|
|
return []
|
|
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
|
key = 'image'
|
|
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
|
key = 'ref'
|
|
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
|
key = 'box'
|
|
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
|
key = 'quad'
|
|
else:
|
|
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
|
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
|
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
|
val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
|
|
return [{key: val}]
|
|
|
|
return _replace_closed_tag(
|
|
token_ids,
|
|
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
|
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
|
_encode_vl_info,
|
|
_encode_vl_info,
|
|
)
|
|
|
|
def from_list_format(self, list_format: List[Dict]):
|
|
text = ''
|
|
num_images = 0
|
|
for ele in list_format:
|
|
if 'image' in ele:
|
|
num_images += 1
|
|
text += f'Picture {num_images}: '
|
|
text += self.image_start_tag + ele['image'] + self.image_end_tag
|
|
text += '\n'
|
|
elif 'text' in ele:
|
|
text += ele['text']
|
|
elif 'box' in ele:
|
|
if 'ref' in ele:
|
|
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
|
for box in ele['box']:
|
|
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
|
else:
|
|
raise ValueError("Unsupport element: " + str(ele))
|
|
return text
|
|
|
|
def _fetch_latest_picture(self, response, history):
|
|
if history is None:
|
|
history = []
|
|
_history = history + [(response, None)]
|
|
for q, r in _history[::-1]:
|
|
for ele in self.to_list_format(q)[::-1]:
|
|
if 'image' in ele:
|
|
return ele['image']
|
|
return None
|
|
|
|
def _fetch_all_box_with_ref(self, text):
|
|
list_format = self.to_list_format(text)
|
|
output = []
|
|
for i, ele in enumerate(list_format):
|
|
if 'box' in ele:
|
|
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
|
assert len(bbox) == 4
|
|
output.append({'box': bbox})
|
|
if i > 0 and 'ref' in list_format[i-1]:
|
|
output[-1]['ref'] = list_format[i-1]['ref'].strip()
|
|
return output
|
|
|
|
def draw_bbox_on_latest_picture(
|
|
self,
|
|
response,
|
|
history=None,
|
|
) -> Optional[Image.Image]:
|
|
image = self._fetch_latest_picture(response, history)
|
|
if image is None:
|
|
return None
|
|
if image.startswith("http://") or image.startswith("https://"):
|
|
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
|
h, w = image.height, image.width
|
|
else:
|
|
image = np.asarray(Image.open(image).convert("RGB"))
|
|
h, w = image.shape[0], image.shape[1]
|
|
visualizer = Visualizer(image)
|
|
|
|
boxes = self._fetch_all_box_with_ref(response)
|
|
if not boxes:
|
|
return None
|
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
|
for box in boxes:
|
|
if 'ref' in box: # random new color for new refexps
|
|
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
|
|
x1, y1, x2, y2 = box['box']
|
|
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
|
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
|
|
if 'ref' in box:
|
|
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
|
return visualizer.output
|
|
|
|
|
|
import colorsys
|
|
import logging
|
|
import math
|
|
import numpy as np
|
|
import matplotlib as mpl
|
|
import matplotlib.colors as mplc
|
|
import matplotlib.figure as mplfigure
|
|
import torch
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
|
from PIL import Image
|
|
import random
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class VisImage:
|
|
def __init__(self, img, scale=1.0):
|
|
self.img = img
|
|
self.scale = scale
|
|
self.width, self.height = img.shape[1], img.shape[0]
|
|
self._setup_figure(img)
|
|
|
|
def _setup_figure(self, img):
|
|
fig = mplfigure.Figure(frameon=False)
|
|
self.dpi = fig.get_dpi()
|
|
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
|
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
|
fig.set_size_inches(
|
|
(self.width * self.scale + 1e-2) / self.dpi,
|
|
(self.height * self.scale + 1e-2) / self.dpi,
|
|
)
|
|
self.canvas = FigureCanvasAgg(fig)
|
|
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
|
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
|
ax.axis("off")
|
|
self.fig = fig
|
|
self.ax = ax
|
|
self.reset_image(img)
|
|
|
|
def reset_image(self, img):
|
|
img = img.astype("uint8")
|
|
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
|
|
|
def save(self, filepath):
|
|
self.fig.savefig(filepath)
|
|
|
|
def get_image(self):
|
|
canvas = self.canvas
|
|
s, (width, height) = canvas.print_to_buffer()
|
|
|
|
buffer = np.frombuffer(s, dtype="uint8")
|
|
|
|
img_rgba = buffer.reshape(height, width, 4)
|
|
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
|
return rgb.astype("uint8")
|
|
|
|
|
|
class Visualizer:
|
|
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
|
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
|
self.font_path = FONT_PATH
|
|
self.output = VisImage(self.img, scale=scale)
|
|
self.cpu_device = torch.device("cpu")
|
|
|
|
# too small texts are useless, therefore clamp to 14
|
|
self._default_font_size = max(
|
|
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
|
|
)
|
|
|
|
def draw_text(
|
|
self,
|
|
text,
|
|
position,
|
|
*,
|
|
font_size=None,
|
|
color="g",
|
|
horizontal_alignment="center",
|
|
rotation=0,
|
|
):
|
|
if not font_size:
|
|
font_size = self._default_font_size
|
|
|
|
# since the text background is dark, we don't want the text to be dark
|
|
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
|
color[np.argmax(color)] = max(0.8, np.max(color))
|
|
|
|
x, y = position
|
|
self.output.ax.text(
|
|
x,
|
|
y,
|
|
text,
|
|
size=font_size * self.output.scale,
|
|
fontproperties=FontProperties(fname=self.font_path),
|
|
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
|
verticalalignment="top",
|
|
horizontalalignment=horizontal_alignment,
|
|
color=color,
|
|
zorder=10,
|
|
rotation=rotation,
|
|
)
|
|
return self.output
|
|
|
|
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
|
|
|
x0, y0, x1, y1 = box_coord
|
|
width = x1 - x0
|
|
height = y1 - y0
|
|
|
|
linewidth = max(self._default_font_size / 4, 1)
|
|
|
|
self.output.ax.add_patch(
|
|
mpl.patches.Rectangle(
|
|
(x0, y0),
|
|
width,
|
|
height,
|
|
fill=False,
|
|
edgecolor=edge_color,
|
|
linewidth=linewidth * self.output.scale,
|
|
alpha=alpha,
|
|
linestyle=line_style,
|
|
)
|
|
)
|
|
return self.output
|
|
|
|
def get_output(self):
|
|
|
|
return self.output
|