first commit
This commit is contained in:
commit
589e866dc6
|
@ -0,0 +1,41 @@
|
||||||
|
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.model filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||||
|
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
||||||
|
hf_logo_small.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
megatron_small.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
spiderman_small.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
stormtrooper_grid.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
oppenheimer_small.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
spiderman-small.png filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,130 @@
|
||||||
|
|
||||||
|
---
|
||||||
|
license: openrail++
|
||||||
|
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
||||||
|
tags:
|
||||||
|
- stable-diffusion-xl
|
||||||
|
- stable-diffusion-xl-diffusers
|
||||||
|
- text-to-image
|
||||||
|
- diffusers
|
||||||
|
- controlnet
|
||||||
|
inference: false
|
||||||
|
---
|
||||||
|
|
||||||
|
# SDXL-controlnet: Depth
|
||||||
|
|
||||||
|
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. This checkpoint is 7x smaller than the original XL controlnet checkpoint. You can find some example images in the following.
|
||||||
|
|
||||||
|
prompt: donald trump, serious look, cigar in the mouth, 70mm, film still, head shot
|
||||||
|
![open](oppenheimer_small.png)
|
||||||
|
|
||||||
|
prompt: spiderman lecture, photorealistic
|
||||||
|
![images_0)](./spiderman-small.png)
|
||||||
|
|
||||||
|
prompt: aerial view, a futuristic research complex in a bright foggy jungle, hard lighting
|
||||||
|
![images_1)](./hf_logo_small.png)
|
||||||
|
|
||||||
|
prompt: megatron in an apocalyptic world ground, runied city in the background, photorealistic
|
||||||
|
![images_2)](./megatron_small.png)
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
Make sure to first install the libraries:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install accelerate transformers safetensors diffusers
|
||||||
|
```
|
||||||
|
|
||||||
|
And then we're ready to go:
|
||||||
|
|
||||||
|
```python
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
||||||
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
||||||
|
from diffusers.utils import load_image
|
||||||
|
|
||||||
|
|
||||||
|
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
||||||
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
||||||
|
controlnet = ControlNetModel.from_pretrained(
|
||||||
|
"diffusers/controlnet-depth-sdxl-1.0-small",
|
||||||
|
variant="fp16",
|
||||||
|
use_safetensors=True,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
).to("cuda")
|
||||||
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
||||||
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||||
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||||
|
controlnet=controlnet,
|
||||||
|
vae=vae,
|
||||||
|
variant="fp16",
|
||||||
|
use_safetensors=True,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
).to("cuda")
|
||||||
|
pipe.enable_model_cpu_offload()
|
||||||
|
|
||||||
|
def get_depth_map(image):
|
||||||
|
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
||||||
|
with torch.no_grad(), torch.autocast("cuda"):
|
||||||
|
depth_map = depth_estimator(image).predicted_depth
|
||||||
|
|
||||||
|
depth_map = torch.nn.functional.interpolate(
|
||||||
|
depth_map.unsqueeze(1),
|
||||||
|
size=(1024, 1024),
|
||||||
|
mode="bicubic",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
||||||
|
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
||||||
|
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
||||||
|
image = torch.cat([depth_map] * 3, dim=1)
|
||||||
|
|
||||||
|
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
||||||
|
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
||||||
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
prompt = "stormtrooper lecture, photorealistic"
|
||||||
|
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
|
||||||
|
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
||||||
|
|
||||||
|
depth_image = get_depth_map(image)
|
||||||
|
|
||||||
|
images = pipe(
|
||||||
|
prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
||||||
|
).images
|
||||||
|
images[0]
|
||||||
|
|
||||||
|
images[0].save(f"stormtrooper_grid.png")
|
||||||
|
```
|
||||||
|
|
||||||
|
![](./stormtrooper_grid.png)
|
||||||
|
|
||||||
|
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
||||||
|
|
||||||
|
🚨 Please note that this checkpoint is experimental and there's a lot of room for improvement. We encourage the community to build on top of it, improve it, and provide us with feedback. 🚨
|
||||||
|
|
||||||
|
### Training
|
||||||
|
|
||||||
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
||||||
|
You can refer to [this script](https://github.com/huggingface/diffusers/blob/7b93c2a882d8e12209fbaeffa51ee2b599ab5349/examples/research_projects/controlnet/train_controlnet_webdataset.py) for full discolsure.
|
||||||
|
|
||||||
|
* This checkpoint does not perform distillation. We just use a smaller ControlNet initialized from the SDXL UNet. We
|
||||||
|
encourage the community to try and conduct distillation too. This resource might be of help in [this regard](https://huggingface.co/blog/sd_distillation).
|
||||||
|
* To learn more about how the ControlNet was initialized, refer to [this code block](https://github.com/huggingface/diffusers/blob/7b93c2a882d8e12209fbaeffa51ee2b599ab5349/examples/research_projects/controlnet/train_controlnet_webdataset.py#L981C1-L999C36).
|
||||||
|
* It does not have any attention blocks.
|
||||||
|
* The model works pretty good on most conditioning images. But for more complex conditionings, the bigger checkpoints might be better. We are still working on improving the quality of this checkpoint and looking for feedback from the community.
|
||||||
|
* We recommend playing around with the `controlnet_conditioning_scale` and `guidance_scale` arguments for potentially better
|
||||||
|
image generation quality.
|
||||||
|
|
||||||
|
#### Training data
|
||||||
|
The model was trained on 3M images from LAION aesthetic 6 plus subset, with batch size of 256 for 50k steps with constant learning rate of 3e-5.
|
||||||
|
|
||||||
|
#### Compute
|
||||||
|
One 8xA100 machine
|
||||||
|
|
||||||
|
#### Mixed precision
|
||||||
|
FP16
|
|
@ -0,0 +1,57 @@
|
||||||
|
{
|
||||||
|
"_class_name": "ControlNetModel",
|
||||||
|
"_diffusers_version": "0.20.0.dev0",
|
||||||
|
"_name_or_path": "valhalla/d-n-a-fixed",
|
||||||
|
"act_fn": "silu",
|
||||||
|
"addition_embed_type": "text_time",
|
||||||
|
"addition_embed_type_num_heads": 64,
|
||||||
|
"addition_time_embed_dim": 256,
|
||||||
|
"attention_head_dim": [
|
||||||
|
5,
|
||||||
|
10,
|
||||||
|
20
|
||||||
|
],
|
||||||
|
"block_out_channels": [
|
||||||
|
320,
|
||||||
|
640,
|
||||||
|
1280
|
||||||
|
],
|
||||||
|
"class_embed_type": null,
|
||||||
|
"conditioning_channels": 3,
|
||||||
|
"conditioning_embedding_out_channels": [
|
||||||
|
16,
|
||||||
|
32,
|
||||||
|
96,
|
||||||
|
256
|
||||||
|
],
|
||||||
|
"controlnet_conditioning_channel_order": "rgb",
|
||||||
|
"cross_attention_dim": 2048,
|
||||||
|
"down_block_types": [
|
||||||
|
"DownBlock2D",
|
||||||
|
"DownBlock2D",
|
||||||
|
"DownBlock2D"
|
||||||
|
],
|
||||||
|
"downsample_padding": 1,
|
||||||
|
"encoder_hid_dim": null,
|
||||||
|
"encoder_hid_dim_type": null,
|
||||||
|
"flip_sin_to_cos": true,
|
||||||
|
"freq_shift": 0,
|
||||||
|
"global_pool_conditions": false,
|
||||||
|
"in_channels": 4,
|
||||||
|
"layers_per_block": 2,
|
||||||
|
"mid_block_scale_factor": 1,
|
||||||
|
"norm_eps": 1e-05,
|
||||||
|
"norm_num_groups": 32,
|
||||||
|
"num_attention_heads": null,
|
||||||
|
"num_class_embeds": null,
|
||||||
|
"only_cross_attention": false,
|
||||||
|
"projection_class_embeddings_input_dim": 2816,
|
||||||
|
"resnet_time_scale_shift": "default",
|
||||||
|
"transformer_layers_per_block": [
|
||||||
|
0,
|
||||||
|
0,
|
||||||
|
0
|
||||||
|
],
|
||||||
|
"upcast_attention": null,
|
||||||
|
"use_linear_projection": true
|
||||||
|
}
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue