157 lines
4.7 KiB
Markdown
157 lines
4.7 KiB
Markdown
|
|
||
|
---
|
||
|
license: openrail++
|
||
|
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
||
|
tags:
|
||
|
- stable-diffusion-xl
|
||
|
- stable-diffusion-xl-diffusers
|
||
|
- text-to-image
|
||
|
- diffusers
|
||
|
- controlnet
|
||
|
inference: false
|
||
|
---
|
||
|
|
||
|
# SDXL-controlnet: Zoe-Depth
|
||
|
|
||
|
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning.
|
||
|
|
||
|
You can find some example images in the following.
|
||
|
|
||
|
![images_0)](./zoe-depth-example.png)
|
||
|
|
||
|
![images_2](./zoe-megatron.png)
|
||
|
|
||
|
![images_3](./photo-woman.png)
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
Make sure first to install the libraries:
|
||
|
|
||
|
```bash
|
||
|
pip install accelerate transformers safetensors diffusers
|
||
|
```
|
||
|
|
||
|
And then setup the zoe-depth model
|
||
|
|
||
|
```
|
||
|
import torch
|
||
|
import matplotlib
|
||
|
import matplotlib.cm
|
||
|
import numpy as np
|
||
|
|
||
|
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
|
||
|
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
|
||
|
model_zoe_n = model_zoe_n.to("cuda")
|
||
|
|
||
|
|
||
|
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
||
|
if isinstance(value, torch.Tensor):
|
||
|
value = value.detach().cpu().numpy()
|
||
|
|
||
|
value = value.squeeze()
|
||
|
if invalid_mask is None:
|
||
|
invalid_mask = value == invalid_val
|
||
|
mask = np.logical_not(invalid_mask)
|
||
|
|
||
|
# normalize
|
||
|
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
||
|
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
||
|
if vmin != vmax:
|
||
|
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
||
|
else:
|
||
|
# Avoid 0-division
|
||
|
value = value * 0.
|
||
|
|
||
|
# squeeze last dim if it exists
|
||
|
# grey out the invalid values
|
||
|
|
||
|
value[invalid_mask] = np.nan
|
||
|
cmapper = matplotlib.cm.get_cmap(cmap)
|
||
|
if value_transform:
|
||
|
value = value_transform(value)
|
||
|
# value = value / value.max()
|
||
|
value = cmapper(value, bytes=True) # (nxmx4)
|
||
|
|
||
|
# img = value[:, :, :]
|
||
|
img = value[...]
|
||
|
img[invalid_mask] = background_color
|
||
|
|
||
|
# gamma correction
|
||
|
img = img / 255
|
||
|
img = np.power(img, 2.2)
|
||
|
img = img * 255
|
||
|
img = img.astype(np.uint8)
|
||
|
img = Image.fromarray(img)
|
||
|
return img
|
||
|
|
||
|
|
||
|
def get_zoe_depth_map(image):
|
||
|
with torch.autocast("cuda", enabled=True):
|
||
|
depth = model_zoe_n.infer_pil(image)
|
||
|
depth = colorize(depth, cmap="gray_r")
|
||
|
return depth
|
||
|
```
|
||
|
|
||
|
Now we're ready to go:
|
||
|
|
||
|
```python
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
|
||
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
||
|
from diffusers.utils import load_image
|
||
|
|
||
|
controlnet = ControlNetModel.from_pretrained(
|
||
|
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
||
|
use_safetensors=True,
|
||
|
torch_dtype=torch.float16,
|
||
|
).to("cuda")
|
||
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
||
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||
|
"stabilityai/stable-diffusion-xl-base-1.0",
|
||
|
controlnet=controlnet,
|
||
|
vae=vae,
|
||
|
variant="fp16",
|
||
|
use_safetensors=True,
|
||
|
torch_dtype=torch.float16,
|
||
|
).to("cuda")
|
||
|
pipe.enable_model_cpu_offload()
|
||
|
|
||
|
|
||
|
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
|
||
|
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
|
||
|
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
|
||
|
|
||
|
controlnet_conditioning_scale = 0.55
|
||
|
|
||
|
depth_image = get_zoe_depth_map(image).resize((1088, 896))
|
||
|
|
||
|
generator = torch.Generator("cuda").manual_seed(978364352)
|
||
|
images = pipe(
|
||
|
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
|
||
|
).images
|
||
|
images[0]
|
||
|
|
||
|
images[0].save(f"pixel-barbie.png")
|
||
|
```
|
||
|
|
||
|
![images_1)](./barbie.png)
|
||
|
|
||
|
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
||
|
|
||
|
### Training
|
||
|
|
||
|
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
||
|
|
||
|
#### Training data and Compute
|
||
|
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
||
|
|
||
|
#### Batch size
|
||
|
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
|
||
|
|
||
|
#### Hyper Parameters
|
||
|
Constant learning rate of 1e-5.
|
||
|
|
||
|
#### Mixed precision
|
||
|
fp16
|