first commit

This commit is contained in:
ailab 2024-06-08 01:43:43 +08:00
commit d0478c8ed3
8 changed files with 252 additions and 0 deletions

35
.gitattributes vendored Normal file
View File

@ -0,0 +1,35 @@
*.7z filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.bz2 filter=lfs diff=lfs merge=lfs -text
*.ckpt filter=lfs diff=lfs merge=lfs -text
*.ftz filter=lfs diff=lfs merge=lfs -text
*.gz filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.joblib filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.mlmodel filter=lfs diff=lfs merge=lfs -text
*.model filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text
*.npy filter=lfs diff=lfs merge=lfs -text
*.npz filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.parquet filter=lfs diff=lfs merge=lfs -text
*.pb filter=lfs diff=lfs merge=lfs -text
*.pickle filter=lfs diff=lfs merge=lfs -text
*.pkl filter=lfs diff=lfs merge=lfs -text
*.pt filter=lfs diff=lfs merge=lfs -text
*.pth filter=lfs diff=lfs merge=lfs -text
*.rar filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.tar.* filter=lfs diff=lfs merge=lfs -text
*.tar filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tgz filter=lfs diff=lfs merge=lfs -text
*.wasm filter=lfs diff=lfs merge=lfs -text
*.xz filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text

157
README.md Normal file
View File

@ -0,0 +1,157 @@
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- controlnet
inference: false
---
# SDXL-controlnet: Zoe-Depth
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning.
You can find some example images in the following.
![images_0)](./zoe-depth-example.png)
![images_2](./zoe-megatron.png)
![images_3](./photo-woman.png)
## Usage
Make sure first to install the libraries:
```bash
pip install accelerate transformers safetensors diffusers
```
And then setup the zoe-depth model
```
import torch
import matplotlib
import matplotlib.cm
import numpy as np
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
model_zoe_n = model_zoe_n.to("cuda")
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
vmin = np.percentile(value[mask],2) if vmin is None else vmin
vmax = np.percentile(value[mask],85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
# img = value[:, :, :]
img = value[...]
img[invalid_mask] = background_color
# gamma correction
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
img = Image.fromarray(img)
return img
def get_zoe_depth_map(image):
with torch.autocast("cuda", enabled=True):
depth = model_zoe_n.infer_pil(image)
depth = colorize(depth, cmap="gray_r")
return depth
```
Now we're ready to go:
```python
import torch
import numpy as np
from PIL import Image
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-zoe-depth-sdxl-1.0",
use_safetensors=True,
torch_dtype=torch.float16,
).to("cuda")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
variant="fp16",
use_safetensors=True,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_model_cpu_offload()
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
controlnet_conditioning_scale = 0.55
depth_image = get_zoe_depth_map(image).resize((1088, 896))
generator = torch.Generator("cuda").manual_seed(978364352)
images = pipe(
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
).images
images[0]
images[0].save(f"pixel-barbie.png")
```
![images_1)](./barbie.png)
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
### Training
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
#### Training data and Compute
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
#### Batch size
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
#### Hyper Parameters
Constant learning rate of 1e-5.
#### Mixed precision
fp16

BIN
barbie.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 644 KiB

57
config.json Normal file
View File

@ -0,0 +1,57 @@
{
"_class_name": "ControlNetModel",
"_diffusers_version": "0.20.0.dev0",
"_name_or_path": "valhalla/zoe-depth",
"act_fn": "silu",
"addition_embed_type": "text_time",
"addition_embed_type_num_heads": 64,
"addition_time_embed_dim": 256,
"attention_head_dim": [
5,
10,
20
],
"block_out_channels": [
320,
640,
1280
],
"class_embed_type": null,
"conditioning_channels": 3,
"conditioning_embedding_out_channels": [
16,
32,
96,
256
],
"controlnet_conditioning_channel_order": "rgb",
"cross_attention_dim": 2048,
"down_block_types": [
"DownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D"
],
"downsample_padding": 1,
"encoder_hid_dim": null,
"encoder_hid_dim_type": null,
"flip_sin_to_cos": true,
"freq_shift": 0,
"global_pool_conditions": false,
"in_channels": 4,
"layers_per_block": 2,
"mid_block_scale_factor": 1,
"norm_eps": 1e-05,
"norm_num_groups": 32,
"num_attention_heads": null,
"num_class_embeds": null,
"only_cross_attention": false,
"projection_class_embeddings_input_dim": 2816,
"resnet_time_scale_shift": "default",
"transformer_layers_per_block": [
1,
2,
10
],
"upcast_attention": null,
"use_linear_projection": true
}

BIN
diffusion_pytorch_model.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
photo-woman.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 621 KiB

BIN
zoe-depth-example.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 539 KiB

BIN
zoe-megatron.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB