first commit
This commit is contained in:
commit
3e2dea2087
|
@ -0,0 +1,66 @@
|
||||||
|
---
|
||||||
|
license: apache-2.0
|
||||||
|
tags:
|
||||||
|
- vision
|
||||||
|
- image-classification
|
||||||
|
datasets:
|
||||||
|
- imagenet-1k
|
||||||
|
---
|
||||||
|
|
||||||
|
# ResNet-50 v1.5
|
||||||
|
|
||||||
|
ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by He et al.
|
||||||
|
|
||||||
|
Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.
|
||||||
|
|
||||||
|
This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch).
|
||||||
|
|
||||||
|
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png)
|
||||||
|
|
||||||
|
## Intended uses & limitations
|
||||||
|
|
||||||
|
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for
|
||||||
|
fine-tuned versions on a task that interests you.
|
||||||
|
|
||||||
|
### How to use
|
||||||
|
|
||||||
|
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoImageProcessor, ResNetForImageClassification
|
||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
dataset = load_dataset("huggingface/cats-image")
|
||||||
|
image = dataset["test"]["image"][0]
|
||||||
|
|
||||||
|
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
||||||
|
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
|
||||||
|
|
||||||
|
inputs = processor(image, return_tensors="pt")
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
logits = model(**inputs).logits
|
||||||
|
|
||||||
|
# model predicts one of the 1000 ImageNet classes
|
||||||
|
predicted_label = logits.argmax(-1).item()
|
||||||
|
print(model.config.id2label[predicted_label])
|
||||||
|
```
|
||||||
|
|
||||||
|
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/resnet).
|
||||||
|
|
||||||
|
### BibTeX entry and citation info
|
||||||
|
|
||||||
|
```bibtex
|
||||||
|
@inproceedings{he2016deep,
|
||||||
|
title={Deep residual learning for image recognition},
|
||||||
|
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
|
||||||
|
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
|
||||||
|
pages={770--778},
|
||||||
|
year={2016}
|
||||||
|
}
|
||||||
|
```
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,18 @@
|
||||||
|
{
|
||||||
|
"crop_pct": 0.875,
|
||||||
|
"do_normalize": true,
|
||||||
|
"do_resize": true,
|
||||||
|
"feature_extractor_type": "ConvNextFeatureExtractor",
|
||||||
|
"image_mean": [
|
||||||
|
0.485,
|
||||||
|
0.456,
|
||||||
|
0.406
|
||||||
|
],
|
||||||
|
"image_std": [
|
||||||
|
0.229,
|
||||||
|
0.224,
|
||||||
|
0.225
|
||||||
|
],
|
||||||
|
"resample": 3,
|
||||||
|
"size": 224
|
||||||
|
}
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue