diff --git a/hpo - 副本.PY b/hpo - 副本.PY new file mode 100644 index 0000000..9130867 --- /dev/null +++ b/hpo - 副本.PY @@ -0,0 +1,31 @@ +from sklearn.datasets import load_iris +from sklearn.model_selection import train_test_split +from sklearn.svm import SVC +import argparse + +# 加载数据集 +iris = load_iris() +X = iris.data +y = iris.target + +# 划分数据集 +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# 参数解析 +parser = argparse.ArgumentParser(description='SVM Model for Iris dataset') +parser.add_argument('--C', type=float, default=1.0, help='Regularization parameter') +parser.add_argument('--kernel', type=str, default='rbf', help='Kernel type') +parser.add_argument('--gamma', type=float, default='scale', help='Kernel coefficient') + +args = parser.parse_args() + +# 定义支持向量机模型并设置参数 +svm = SVC(C=args.C, kernel=args.kernel, gamma=args.gamma) + +# 在训练集上拟合模型 +svm.fit(X_train, y_train) + +# 输出模型在测试集上的准确率 +test_accuracy = svm.score(X_test, y_test) +print(f"Accuracy={test_accuracy}") +