dense-mnist-tf/evaluate.py

61 lines
2.0 KiB
Python
Raw Permalink Normal View History

import argparse
import gzip
import json
import os
import numpy as np
def load_data(data_dir):
files = [
'train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz'
]
paths = []
for f in files:
paths.append(os.path.join(data_dir, f))
with gzip.open(paths[0], 'rb') as f:
y_train = np.frombuffer(f.read(), np.uint8, offset=8)
with gzip.open(paths[1], 'rb') as f:
x_train = np.frombuffer(f.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)
with gzip.open(paths[2], 'rb') as f:
y_test = np.frombuffer(f.read(), np.uint8, offset=8)
with gzip.open(paths[3], 'rb') as f:
x_test = np.frombuffer(f.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)
return (x_train, y_train), (x_test, y_test)
def setup_config():
parser = argparse.ArgumentParser(
description="MNIST digit classification Evaluation using prediction results and labels"
)
parser.add_argument('--label-dir', required=True, help='Directory to labels')
parser.add_argument('--predictions', required=True, help='Path to prediction results numpy-array-like file')
parser.add_argument('--output-dir', required=True, help='Directory to evaluation result')
args = parser.parse_args()
return args
def main():
args = setup_config()
(_, _), (_, labels) = load_data(args.label_dir)
predictions = np.load(args.predictions)
labels = np.reshape(labels, (-1,))
predictions = np.reshape(predictions, (-1,))
accuracy = (labels == predictions).sum() / labels.shape[0]
print(f'Accuracy is {accuracy}')
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
result_file = os.path.join(args.output_dir, "result.json")
with open(result_file, 'w') as f:
json.dump({'accuracy': accuracy}, f)
print(f"Saved evaluation result to {result_file}")
if __name__ == '__main__':
main()