first commit
This commit is contained in:
commit
d0478c8ed3
|
@ -0,0 +1,35 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,157 @@
|
|||
|
||||
---
|
||||
license: openrail++
|
||||
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
||||
tags:
|
||||
- stable-diffusion-xl
|
||||
- stable-diffusion-xl-diffusers
|
||||
- text-to-image
|
||||
- diffusers
|
||||
- controlnet
|
||||
inference: false
|
||||
---
|
||||
|
||||
# SDXL-controlnet: Zoe-Depth
|
||||
|
||||
These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning.
|
||||
|
||||
You can find some example images in the following.
|
||||
|
||||
![images_0)](./zoe-depth-example.png)
|
||||
|
||||
![images_2](./zoe-megatron.png)
|
||||
|
||||
![images_3](./photo-woman.png)
|
||||
|
||||
## Usage
|
||||
|
||||
Make sure first to install the libraries:
|
||||
|
||||
```bash
|
||||
pip install accelerate transformers safetensors diffusers
|
||||
```
|
||||
|
||||
And then setup the zoe-depth model
|
||||
|
||||
```
|
||||
import torch
|
||||
import matplotlib
|
||||
import matplotlib.cm
|
||||
import numpy as np
|
||||
|
||||
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
|
||||
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
|
||||
model_zoe_n = model_zoe_n.to("cuda")
|
||||
|
||||
|
||||
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
||||
if isinstance(value, torch.Tensor):
|
||||
value = value.detach().cpu().numpy()
|
||||
|
||||
value = value.squeeze()
|
||||
if invalid_mask is None:
|
||||
invalid_mask = value == invalid_val
|
||||
mask = np.logical_not(invalid_mask)
|
||||
|
||||
# normalize
|
||||
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
||||
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
||||
if vmin != vmax:
|
||||
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
||||
else:
|
||||
# Avoid 0-division
|
||||
value = value * 0.
|
||||
|
||||
# squeeze last dim if it exists
|
||||
# grey out the invalid values
|
||||
|
||||
value[invalid_mask] = np.nan
|
||||
cmapper = matplotlib.cm.get_cmap(cmap)
|
||||
if value_transform:
|
||||
value = value_transform(value)
|
||||
# value = value / value.max()
|
||||
value = cmapper(value, bytes=True) # (nxmx4)
|
||||
|
||||
# img = value[:, :, :]
|
||||
img = value[...]
|
||||
img[invalid_mask] = background_color
|
||||
|
||||
# gamma correction
|
||||
img = img / 255
|
||||
img = np.power(img, 2.2)
|
||||
img = img * 255
|
||||
img = img.astype(np.uint8)
|
||||
img = Image.fromarray(img)
|
||||
return img
|
||||
|
||||
|
||||
def get_zoe_depth_map(image):
|
||||
with torch.autocast("cuda", enabled=True):
|
||||
depth = model_zoe_n.infer_pil(image)
|
||||
depth = colorize(depth, cmap="gray_r")
|
||||
return depth
|
||||
```
|
||||
|
||||
Now we're ready to go:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
||||
from diffusers.utils import load_image
|
||||
|
||||
controlnet = ControlNetModel.from_pretrained(
|
||||
"diffusers/controlnet-zoe-depth-sdxl-1.0",
|
||||
use_safetensors=True,
|
||||
torch_dtype=torch.float16,
|
||||
).to("cuda")
|
||||
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
||||
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-xl-base-1.0",
|
||||
controlnet=controlnet,
|
||||
vae=vae,
|
||||
variant="fp16",
|
||||
use_safetensors=True,
|
||||
torch_dtype=torch.float16,
|
||||
).to("cuda")
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
|
||||
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
|
||||
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
|
||||
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
|
||||
|
||||
controlnet_conditioning_scale = 0.55
|
||||
|
||||
depth_image = get_zoe_depth_map(image).resize((1088, 896))
|
||||
|
||||
generator = torch.Generator("cuda").manual_seed(978364352)
|
||||
images = pipe(
|
||||
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
|
||||
).images
|
||||
images[0]
|
||||
|
||||
images[0].save(f"pixel-barbie.png")
|
||||
```
|
||||
|
||||
![images_1)](./barbie.png)
|
||||
|
||||
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
||||
|
||||
### Training
|
||||
|
||||
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
||||
|
||||
#### Training data and Compute
|
||||
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
||||
|
||||
#### Batch size
|
||||
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
|
||||
|
||||
#### Hyper Parameters
|
||||
Constant learning rate of 1e-5.
|
||||
|
||||
#### Mixed precision
|
||||
fp16
|
Binary file not shown.
After Width: | Height: | Size: 644 KiB |
|
@ -0,0 +1,57 @@
|
|||
{
|
||||
"_class_name": "ControlNetModel",
|
||||
"_diffusers_version": "0.20.0.dev0",
|
||||
"_name_or_path": "valhalla/zoe-depth",
|
||||
"act_fn": "silu",
|
||||
"addition_embed_type": "text_time",
|
||||
"addition_embed_type_num_heads": 64,
|
||||
"addition_time_embed_dim": 256,
|
||||
"attention_head_dim": [
|
||||
5,
|
||||
10,
|
||||
20
|
||||
],
|
||||
"block_out_channels": [
|
||||
320,
|
||||
640,
|
||||
1280
|
||||
],
|
||||
"class_embed_type": null,
|
||||
"conditioning_channels": 3,
|
||||
"conditioning_embedding_out_channels": [
|
||||
16,
|
||||
32,
|
||||
96,
|
||||
256
|
||||
],
|
||||
"controlnet_conditioning_channel_order": "rgb",
|
||||
"cross_attention_dim": 2048,
|
||||
"down_block_types": [
|
||||
"DownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D"
|
||||
],
|
||||
"downsample_padding": 1,
|
||||
"encoder_hid_dim": null,
|
||||
"encoder_hid_dim_type": null,
|
||||
"flip_sin_to_cos": true,
|
||||
"freq_shift": 0,
|
||||
"global_pool_conditions": false,
|
||||
"in_channels": 4,
|
||||
"layers_per_block": 2,
|
||||
"mid_block_scale_factor": 1,
|
||||
"norm_eps": 1e-05,
|
||||
"norm_num_groups": 32,
|
||||
"num_attention_heads": null,
|
||||
"num_class_embeds": null,
|
||||
"only_cross_attention": false,
|
||||
"projection_class_embeddings_input_dim": 2816,
|
||||
"resnet_time_scale_shift": "default",
|
||||
"transformer_layers_per_block": [
|
||||
1,
|
||||
2,
|
||||
10
|
||||
],
|
||||
"upcast_attention": null,
|
||||
"use_linear_projection": true
|
||||
}
|
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 621 KiB |
Binary file not shown.
After Width: | Height: | Size: 539 KiB |
Binary file not shown.
After Width: | Height: | Size: 476 KiB |
Loading…
Reference in New Issue