glm4/basic_demo/trans_web_demo.py

150 lines
5.4 KiB
Python
Raw Permalink Normal View History

2024-06-05 10:22:16 +08:00
"""
This script creates an interactive web demo for the GLM-4-9B model using Gradio,
a Python library for building quick and easy UI components for machine learning models.
It's designed to showcase the capabilities of the GLM-4-9B model in a user-friendly interface,
allowing users to interact with the model through a chat-like interface.
2024-11-01 17:00:39 +08:00
Note:
Using with glm-4-9b-chat-hf will require `transformers>=4.46.0".
2024-06-05 10:22:16 +08:00
"""
import os
2024-06-08 16:12:58 +08:00
from pathlib import Path
2024-06-05 10:22:16 +08:00
from threading import Thread
from typing import Union
2024-06-08 16:12:58 +08:00
import gradio as gr
import torch
2024-06-05 10:22:16 +08:00
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
2024-11-01 17:00:39 +08:00
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat-hf')
2024-06-05 10:22:16 +08:00
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
def _resolve_path(path: Union[str, Path]) -> Path:
return Path(path).expanduser().resolve()
def load_model_and_tokenizer(
model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
model_dir = _resolve_path(model_dir)
if (model_dir / 'adapter_config.json').exists():
model = AutoPeftModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
)
tokenizer_dir = model.peft_config['default'].base_model_name_or_path
else:
model = AutoModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
)
tokenizer_dir = model_dir
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_dir, trust_remote_code=trust_remote_code, use_fast=False
)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
2024-06-08 16:12:58 +08:00
def predict(history, prompt, max_length, top_p, temperature):
2024-06-05 10:22:16 +08:00
stop = StopOnTokens()
messages = []
2024-06-08 16:12:58 +08:00
if prompt:
messages.append({"role": "system", "content": prompt})
2024-06-05 10:22:16 +08:00
for idx, (user_msg, model_msg) in enumerate(history):
if prompt and idx == 0:
continue
2024-06-05 10:22:16 +08:00
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt").to(next(model.parameters()).device)
streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1.2,
"eos_token_id": model.config.eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token:
history[-1][1] += new_token
yield history
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">GLM-4-9B Gradio Simple Chat Demo</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
2024-06-06 19:57:58 +08:00
with gr.Column(scale=3):
2024-06-05 10:22:16 +08:00
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit")
2024-06-06 19:57:58 +08:00
with gr.Column(scale=1):
prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
pBtn = gr.Button("Set Prompt")
2024-06-05 10:22:16 +08:00
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
def user(query, history):
return "", history + [[query, ""]]
2024-06-05 10:22:16 +08:00
2024-06-08 16:12:58 +08:00
def set_prompt(prompt_text):
return [[prompt_text, "成功设置prompt"]]
2024-06-06 19:57:58 +08:00
2024-06-08 16:12:58 +08:00
pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
2024-06-06 19:57:58 +08:00
2024-06-05 10:22:16 +08:00
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
2024-06-08 16:12:58 +08:00
predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
2024-06-05 10:22:16 +08:00
)
2024-06-08 16:12:58 +08:00
emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
2024-06-05 10:22:16 +08:00
demo.queue()
demo.launch(server_name="127.0.0.1", server_port=8000, inbrowser=True, share=True)