2024-06-05 10:22:16 +08:00
from pathlib import Path
from typing import Annotated , Union
import typer
2024-07-01 17:00:28 +08:00
from peft import PeftModelForCausalLM
2024-06-05 10:22:16 +08:00
from transformers import (
2024-07-01 17:00:28 +08:00
AutoModel ,
2024-06-05 10:22:16 +08:00
AutoTokenizer ,
PreTrainedModel ,
PreTrainedTokenizer ,
PreTrainedTokenizerFast
)
2024-07-01 17:00:28 +08:00
from PIL import Image
import torch
2024-06-05 10:22:16 +08:00
app = typer . Typer ( pretty_exceptions_show_locals = False )
def load_model_and_tokenizer (
model_dir : Union [ str , Path ] , trust_remote_code : bool = True
2024-07-01 17:00:28 +08:00
) :
2024-06-05 10:22:16 +08:00
model_dir = Path ( model_dir ) . expanduser ( ) . resolve ( )
if ( model_dir / ' adapter_config.json ' ) . exists ( ) :
2024-07-01 17:00:28 +08:00
model = AutoModel . from_pretrained (
model_dir ,
trust_remote_code = trust_remote_code ,
device_map = ' auto ' ,
torch_dtype = torch . bfloat16
2024-06-05 10:22:16 +08:00
)
tokenizer_dir = model . peft_config [ ' default ' ] . base_model_name_or_path
else :
2024-07-01 17:00:28 +08:00
model = AutoModel . from_pretrained (
model_dir ,
trust_remote_code = trust_remote_code ,
device_map = ' auto ' ,
torch_dtype = torch . bfloat16
2024-06-05 10:22:16 +08:00
)
tokenizer_dir = model_dir
tokenizer = AutoTokenizer . from_pretrained (
2024-07-01 17:00:28 +08:00
tokenizer_dir ,
trust_remote_code = trust_remote_code ,
encode_special_tokens = True ,
use_fast = False
2024-06-05 10:22:16 +08:00
)
return model , tokenizer
@app.command ( )
def main (
model_dir : Annotated [ str , typer . Argument ( help = ' ' ) ] ,
) :
2024-07-01 17:00:28 +08:00
# For GLM-4 Finetune Without Tools
# messages = [
# {
# "role": "user", "content": "#裙子#夏天",
# }
# ]
# For GLM-4 Finetune With Tools
2024-06-05 10:22:16 +08:00
messages = [
{
" role " : " system " , " content " : " " ,
" tools " :
[
{
" type " : " function " ,
" function " : {
" name " : " create_calendar_event " ,
" description " : " Create a new calendar event " ,
" parameters " : {
" type " : " object " ,
" properties " : {
" title " : {
" type " : " string " ,
" description " : " The title of the event "
} ,
" start_time " : {
" type " : " string " ,
" description " : " The start time of the event in the format YYYY-MM-DD HH:MM "
} ,
" end_time " : {
" type " : " string " ,
" description " : " The end time of the event in the format YYYY-MM-DD HH:MM "
}
} ,
" required " : [
" title " ,
" start_time " ,
" end_time "
]
}
}
}
]
} ,
{
" role " : " user " ,
" content " : " Can you help me create a calendar event for my meeting tomorrow? The title is \" Team Meeting \" . It starts at 10:00 AM and ends at 11:00 AM. "
} ,
]
2024-07-01 17:00:28 +08:00
# For GLM-4V Finetune
# messages = [
# {
# "role": "user",
# "content": "女孩可能希望观众做什么?",
# "image": Image.open("your Image").convert("RGB")
# }
# ]
2024-06-05 10:22:16 +08:00
model , tokenizer = load_model_and_tokenizer ( model_dir )
inputs = tokenizer . apply_chat_template (
messages ,
add_generation_prompt = True ,
tokenize = True ,
2024-07-01 17:00:28 +08:00
return_tensors = " pt " ,
return_dict = True
2024-06-05 10:22:16 +08:00
) . to ( model . device )
generate_kwargs = {
" max_new_tokens " : 1024 ,
" do_sample " : True ,
" top_p " : 0.8 ,
" temperature " : 0.8 ,
" repetition_penalty " : 1.2 ,
" eos_token_id " : model . config . eos_token_id ,
}
2024-07-01 17:00:28 +08:00
outputs = model . generate ( * * inputs , * * generate_kwargs )
response = tokenizer . decode ( outputs [ 0 ] [ len ( inputs [ ' input_ids ' ] [ 0 ] ) : ] , skip_special_tokens = True ) . strip ( )
2024-06-05 10:22:16 +08:00
print ( " ========= " )
print ( response )
if __name__ == ' __main__ ' :
app ( )