commit
19f2f91fb5
|
@ -11,6 +11,7 @@ Read this in [English](README_en.md)
|
|||
|
||||
## 项目更新
|
||||
|
||||
- 🔥🔥 **News**: ```2024/09/04```: 增加了在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM 演示代码
|
||||
- 🔥🔥 **News**: ```2024/08/15```: 我们开源具备长文本输出能力(单轮对话大模型输出可超过1万token)
|
||||
的模型 [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b)
|
||||
以及数据集 [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k),
|
||||
|
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
## Update
|
||||
|
||||
- 🔥🔥 **News**: ```2024/09/04```: Add demo code for using vLLM with LoRA adapter on the GLM-4-9B-Chat model.
|
||||
- 🔥🔥 **News**: ```2024/08/15```: We have open-sourced a model with long-text output capability (single turn LLM output can exceed
|
||||
10K tokens) [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b) and the
|
||||
dataset [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k). You're welcome
|
||||
|
|
|
@ -112,6 +112,13 @@ python trans_batch_demo.py
|
|||
python vllm_cli_demo.py
|
||||
```
|
||||
|
||||
+ 在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM
|
||||
```python
|
||||
# vllm_cli_demo.py
|
||||
# 添加 LORA_PATH = ''
|
||||
```
|
||||
|
||||
|
||||
+ 自行构建服务端,并使用 `OpenAI API` 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。
|
||||
|
||||
启动服务端:
|
||||
|
|
|
@ -117,6 +117,13 @@ python trans_batch_demo.py
|
|||
python vllm_cli_demo.py
|
||||
```
|
||||
|
||||
+ use LoRA adapters with vLLM on GLM-4-9B-Chat model.
|
||||
|
||||
```python
|
||||
# vllm_cli_demo.py
|
||||
# add LORA_PATH = ''
|
||||
```
|
||||
|
||||
+ Build the server by yourself and use the request format of `OpenAI API` to communicate with the glm-4-9b model. This
|
||||
demo supports Function Call and All Tools functions.
|
||||
|
||||
|
|
|
@ -14,14 +14,16 @@ import asyncio
|
|||
from transformers import AutoTokenizer
|
||||
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
|
||||
from typing import List, Dict
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
MODEL_PATH = 'THUDM/glm-4-9b-chat'
|
||||
LORA_PATH = ''
|
||||
|
||||
|
||||
def load_model_and_tokenizer(model_dir: str):
|
||||
def load_model_and_tokenizer(model_dir: str, enable_lora: bool):
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=model_dir,
|
||||
tokenizer=model_dir,
|
||||
enable_lora=enable_lora,
|
||||
tensor_parallel_size=1,
|
||||
dtype="bfloat16",
|
||||
trust_remote_code=True,
|
||||
|
@ -42,11 +44,14 @@ def load_model_and_tokenizer(model_dir: str):
|
|||
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
return engine, tokenizer
|
||||
|
||||
enable_lora = False
|
||||
if LORA_PATH:
|
||||
enable_lora = True
|
||||
|
||||
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
|
||||
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH, enable_lora)
|
||||
|
||||
|
||||
async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
|
||||
async def vllm_gen(lora_path: str, enable_lora: bool, messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
|
||||
inputs = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
add_generation_prompt=True,
|
||||
|
@ -70,6 +75,10 @@ async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: fl
|
|||
"skip_special_tokens": True,
|
||||
}
|
||||
sampling_params = SamplingParams(**params_dict)
|
||||
if enable_lora:
|
||||
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}", lora_request=LoRARequest("glm-4-lora", 1, lora_path=lora_path)):
|
||||
yield output.outputs[0].text
|
||||
else:
|
||||
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
|
||||
yield output.outputs[0].text
|
||||
|
||||
|
@ -100,7 +109,7 @@ async def chat():
|
|||
print("\nGLM-4: ", end="")
|
||||
current_length = 0
|
||||
output = ""
|
||||
async for output in vllm_gen(messages, top_p, temperature, max_length):
|
||||
async for output in vllm_gen(LORA_PATH, enable_lora, messages, top_p, temperature, max_length):
|
||||
print(output[current_length:], end="", flush=True)
|
||||
current_length = len(output)
|
||||
history[-1][1] = output
|
||||
|
|
Loading…
Reference in New Issue