Merge pull request #542 from sixsixcoder/main

vLLM with LoRA adapter
This commit is contained in:
zR 2024-09-05 09:52:59 +08:00 committed by GitHub
commit 19f2f91fb5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 33 additions and 8 deletions

View File

@ -11,6 +11,7 @@ Read this in [English](README_en.md)
## 项目更新
- 🔥🔥 **News**: ```2024/09/04```: 增加了在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM 演示代码
- 🔥🔥 **News**: ```2024/08/15```: 我们开源具备长文本输出能力(单轮对话大模型输出可超过1万token)
的模型 [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b)
以及数据集 [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k),

View File

@ -9,6 +9,7 @@
## Update
- 🔥🔥 **News**: ```2024/09/04```: Add demo code for using vLLM with LoRA adapter on the GLM-4-9B-Chat model.
- 🔥🔥 **News**: ```2024/08/15```: We have open-sourced a model with long-text output capability (single turn LLM output can exceed
10K tokens) [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b) and the
dataset [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k). You're welcome

View File

@ -112,6 +112,13 @@ python trans_batch_demo.py
python vllm_cli_demo.py
```
+ 在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM
```python
# vllm_cli_demo.py
# 添加 LORA_PATH = ''
```
+ 自行构建服务端,并使用 `OpenAI API` 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。
启动服务端:

View File

@ -117,6 +117,13 @@ python trans_batch_demo.py
python vllm_cli_demo.py
```
+ use LoRA adapters with vLLM on GLM-4-9B-Chat model.
```python
# vllm_cli_demo.py
# add LORA_PATH = ''
```
+ Build the server by yourself and use the request format of `OpenAI API` to communicate with the glm-4-9b model. This
demo supports Function Call and All Tools functions.

View File

@ -14,14 +14,16 @@ import asyncio
from transformers import AutoTokenizer
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from typing import List, Dict
from vllm.lora.request import LoRARequest
MODEL_PATH = 'THUDM/glm-4-9b-chat'
LORA_PATH = ''
def load_model_and_tokenizer(model_dir: str):
def load_model_and_tokenizer(model_dir: str, enable_lora: bool):
engine_args = AsyncEngineArgs(
model=model_dir,
tokenizer=model_dir,
enable_lora=enable_lora,
tensor_parallel_size=1,
dtype="bfloat16",
trust_remote_code=True,
@ -42,11 +44,14 @@ def load_model_and_tokenizer(model_dir: str):
engine = AsyncLLMEngine.from_engine_args(engine_args)
return engine, tokenizer
enable_lora = False
if LORA_PATH:
enable_lora = True
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH, enable_lora)
async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
async def vllm_gen(lora_path: str, enable_lora: bool, messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
@ -70,8 +75,12 @@ async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: fl
"skip_special_tokens": True,
}
sampling_params = SamplingParams(**params_dict)
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
yield output.outputs[0].text
if enable_lora:
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}", lora_request=LoRARequest("glm-4-lora", 1, lora_path=lora_path)):
yield output.outputs[0].text
else:
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
yield output.outputs[0].text
async def chat():
@ -100,7 +109,7 @@ async def chat():
print("\nGLM-4: ", end="")
current_length = 0
output = ""
async for output in vllm_gen(messages, top_p, temperature, max_length):
async for output in vllm_gen(LORA_PATH, enable_lora, messages, top_p, temperature, max_length):
print(output[current_length:], end="", flush=True)
current_length = len(output)
history[-1][1] = output