update that multi-GPUs inference with transformers in glm-4 and glm-4v
This commit is contained in:
parent
7d62623461
commit
4995f03934
30
README.md
30
README.md
|
@ -146,10 +146,14 @@ GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关
|
|||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
device = "cuda"
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 设置 GPU 编号,如果单机单卡指定一个,单机多卡指定多个 GPU 编号
|
||||
MODEL_PATH = "THUDM/glm-4-9b-chat"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
||||
|
||||
query = "你好"
|
||||
|
||||
|
@ -162,11 +166,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
|||
|
||||
inputs = inputs.to(device)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"THUDM/glm-4-9b-chat",
|
||||
MODEL_PATH,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True
|
||||
).to(device).eval()
|
||||
trust_remote_code=True,
|
||||
device_map="auto"
|
||||
).eval()
|
||||
|
||||
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
|
||||
with torch.no_grad():
|
||||
|
@ -216,10 +221,14 @@ print(outputs[0].outputs[0].text)
|
|||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
device = "cuda"
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 设置 GPU 编号,如果单机单卡指定一个,单机多卡指定多个 GPU 编号
|
||||
MODEL_PATH = "THUDM/glm-4v-9b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
||||
|
||||
query = '描述这张图片'
|
||||
image = Image.open("your image").convert('RGB')
|
||||
|
@ -229,11 +238,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "conten
|
|||
|
||||
inputs = inputs.to(device)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"THUDM/glm-4v-9b",
|
||||
MODEL_PATH,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True
|
||||
).to(device).eval()
|
||||
trust_remote_code=True,
|
||||
device_map="auto"
|
||||
).eval()
|
||||
|
||||
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
|
||||
with torch.no_grad():
|
||||
|
|
32
README_en.md
32
README_en.md
|
@ -163,10 +163,14 @@ Use the transformers backend for inference:
|
|||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
device = "cuda"
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
|
||||
MODEL_PATH = "THUDM/glm-4-9b-chat"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
||||
|
||||
query = "你好"
|
||||
|
||||
|
@ -179,11 +183,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
|
|||
|
||||
inputs = inputs.to(device)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"THUDM/glm-4-9b-chat",
|
||||
MODEL_PATH,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True
|
||||
).to(device).eval()
|
||||
trust_remote_code=True,
|
||||
device_map="auto"
|
||||
).eval()
|
||||
|
||||
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
|
||||
with torch.no_grad():
|
||||
|
@ -233,12 +238,16 @@ Use the transformers backend for inference:
|
|||
import torch
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
import os
|
||||
|
||||
device = "cuda"
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
|
||||
MODEL_PATH = "THUDM/glm-4v-9b"
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
query = 'display this image'
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
||||
|
||||
query = '描述这张图片'
|
||||
image = Image.open("your image").convert('RGB')
|
||||
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
|
||||
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
||||
|
@ -246,11 +255,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "conten
|
|||
|
||||
inputs = inputs.to(device)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"THUDM/glm-4v-9b",
|
||||
MODEL_PATH,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True
|
||||
).to(device).eval()
|
||||
trust_remote_code=True,
|
||||
device_map="auto"
|
||||
).eval()
|
||||
|
||||
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
|
||||
with torch.no_grad():
|
||||
|
|
Loading…
Reference in New Issue