Merge pull request #585 from sixsixcoder/main
Add GLM-4v-9B model support for vllm framework
This commit is contained in:
commit
5142bdb6e1
35
README.md
35
README.md
|
@ -11,6 +11,7 @@ Read this in [English](README_en.md)
|
|||
|
||||
## 项目更新
|
||||
|
||||
- 🔥 **News**: ```2024/10/12```: 增加了 GLM-4v-9B 模型对vllm框架的支持
|
||||
- 🔥 **News**: ```2024/09/06```: 增加了在 GLM-4v-9B 模型上构建OpenAI API兼容的服务端
|
||||
- 🔥 **News**: ```2024/09/05``` 我们开源了使LLMs能够在长上下文问答中生成细粒度引用的模型 [longcite-glm4-9b](https://huggingface.co/THUDM/LongCite-glm4-9b)
|
||||
以及数据集 [LongCite-45k](https://huggingface.co/datasets/THUDM/LongCite-45k),
|
||||
|
@ -252,7 +253,39 @@ with torch.no_grad():
|
|||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
|
||||
注意: GLM-4V-9B 暂不支持使用 vLLM 方式调用。
|
||||
使用 vLLM 后端进行推理:
|
||||
|
||||
```python
|
||||
from PIL import Image
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
model_name = "THUDM/glm-4v-9b"
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
tensor_parallel_size=1,
|
||||
max_model_len=8192,
|
||||
trust_remote_code=True,
|
||||
enforce_eager=True)
|
||||
stop_token_ids = [151329, 151336, 151338]
|
||||
sampling_params = SamplingParams(temperature=0.2,
|
||||
max_tokens=1024,
|
||||
stop_token_ids=stop_token_ids)
|
||||
|
||||
prompt = "What's the content of the image?"
|
||||
image = Image.open("your image").convert('RGB')
|
||||
inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
}
|
||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
```
|
||||
|
||||
## 完整项目列表
|
||||
|
||||
|
|
35
README_en.md
35
README_en.md
|
@ -9,6 +9,7 @@
|
|||
|
||||
## Update
|
||||
|
||||
- 🔥 **News**: ```2024/10/12```: Add GLM-4v-9B model support for vllm framework.
|
||||
- 🔥 **News**: ```2024/09/06```: Add support for OpenAI API server on the GLM-4v-9B model.
|
||||
- 🔥 **News**: ```2024/09/05```: We open-sourced a model enabling LLMs to generate fine-grained citations in
|
||||
long-context Q&A: [longcite-glm4-9b](https://huggingface.co/THUDM/LongCite-glm4-9b), along with the
|
||||
|
@ -269,7 +270,39 @@ with torch.no_grad():
|
|||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
|
||||
Note: GLM-4V-9B does not support calling using vLLM method yet.
|
||||
Use the vLLM backend for inference:
|
||||
|
||||
```python
|
||||
from PIL import Image
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
model_name = "THUDM/glm-4v-9b"
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
tensor_parallel_size=1,
|
||||
max_model_len=8192,
|
||||
trust_remote_code=True,
|
||||
enforce_eager=True)
|
||||
stop_token_ids = [151329, 151336, 151338]
|
||||
sampling_params = SamplingParams(temperature=0.2,
|
||||
max_tokens=1024,
|
||||
stop_token_ids=stop_token_ids)
|
||||
|
||||
prompt = "What's the content of the image?"
|
||||
image = Image.open("your image").convert('RGB')
|
||||
inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},
|
||||
}
|
||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||
|
||||
for o in outputs:
|
||||
generated_text = o.outputs[0].text
|
||||
print(generated_text)
|
||||
|
||||
```
|
||||
|
||||
## Complete project list
|
||||
|
||||
|
|
|
@ -0,0 +1,107 @@
|
|||
"""
|
||||
This script creates a CLI demo with vllm backand for the glm-4v-9b model,
|
||||
allowing users to interact with the model through a command-line interface.
|
||||
|
||||
Usage:
|
||||
- Run the script to start the CLI demo.
|
||||
- Interact with the model by typing questions and receiving responses.
|
||||
|
||||
Note: The script includes a modification to handle markdown to plain text conversion,
|
||||
ensuring that the CLI interface displays formatted text correctly.
|
||||
"""
|
||||
import time
|
||||
import asyncio
|
||||
from PIL import Image
|
||||
from typing import List, Dict
|
||||
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
|
||||
|
||||
MODEL_PATH = 'THUDM/glm-4v-9b'
|
||||
|
||||
def load_model_and_tokenizer(model_dir: str):
|
||||
engine_args = AsyncEngineArgs(
|
||||
model=model_dir,
|
||||
tensor_parallel_size=1,
|
||||
dtype="bfloat16",
|
||||
trust_remote_code=True,
|
||||
gpu_memory_utilization=0.9,
|
||||
enforce_eager=True,
|
||||
worker_use_ray=True,
|
||||
disable_log_requests=True
|
||||
# 如果遇见 OOM 现象,建议开启下述参数
|
||||
# enable_chunked_prefill=True,
|
||||
# max_num_batched_tokens=8192
|
||||
)
|
||||
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||
return engine
|
||||
|
||||
engine = load_model_and_tokenizer(MODEL_PATH)
|
||||
|
||||
async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
|
||||
inputs = messages[-1]
|
||||
params_dict = {
|
||||
"n": 1,
|
||||
"best_of": 1,
|
||||
"presence_penalty": 1.0,
|
||||
"frequency_penalty": 0.0,
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"top_k": -1,
|
||||
"use_beam_search": False,
|
||||
"length_penalty": 1,
|
||||
"early_stopping": False,
|
||||
"ignore_eos": False,
|
||||
"max_tokens": max_dec_len,
|
||||
"logprobs": None,
|
||||
"prompt_logprobs": None,
|
||||
"skip_special_tokens": True,
|
||||
"stop_token_ids" :[151329, 151336, 151338]
|
||||
}
|
||||
sampling_params = SamplingParams(**params_dict)
|
||||
|
||||
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
|
||||
yield output.outputs[0].text
|
||||
|
||||
|
||||
async def chat():
|
||||
history = []
|
||||
max_length = 8192
|
||||
top_p = 0.8
|
||||
temperature = 0.6
|
||||
image = None
|
||||
|
||||
print("Welcome to the GLM-4v-9B CLI chat. Type your messages below.")
|
||||
image_path = input("Image Path:")
|
||||
try:
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
except:
|
||||
print("Invalid image path. Continuing with text conversation.")
|
||||
while True:
|
||||
user_input = input("\nYou: ")
|
||||
if user_input.lower() in ["exit", "quit"]:
|
||||
break
|
||||
history.append([user_input, ""])
|
||||
|
||||
messages = []
|
||||
for idx, (user_msg, model_msg) in enumerate(history):
|
||||
if idx == len(history) - 1 and not model_msg:
|
||||
messages.append({
|
||||
"prompt": user_msg,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
},})
|
||||
break
|
||||
if user_msg:
|
||||
messages.append({"role": "user", "prompt": user_msg})
|
||||
if model_msg:
|
||||
messages.append({"role": "assistant", "prompt": model_msg})
|
||||
|
||||
print("\nGLM-4v: ", end="")
|
||||
current_length = 0
|
||||
output = ""
|
||||
async for output in vllm_gen(messages, top_p, temperature, max_length):
|
||||
print(output[current_length:], end="", flush=True)
|
||||
current_length = len(output)
|
||||
history[-1][1] = output
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(chat())
|
Loading…
Reference in New Issue