fix bug in glm-4v openai_server
This commit is contained in:
parent
c23abb0c59
commit
5c70856738
|
@ -22,7 +22,6 @@ from PIL import Image
|
|||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
|
||||
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
||||
|
||||
@asynccontextmanager
|
||||
|
@ -167,7 +166,7 @@ async def create_chat_completion(request: ChatCompletionRequest):
|
|||
generate = predict(request.model, gen_params)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
response = generate_glm4v(model, tokenizer, gen_params)
|
||||
|
||||
|
||||
usage = UsageInfo()
|
||||
|
||||
message = ChatMessageResponse(
|
||||
|
@ -283,6 +282,7 @@ def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[
|
|||
|
||||
@torch.inference_mode()
|
||||
def generate_stream_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: dict):
|
||||
uploaded = False
|
||||
messages = params["messages"]
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
repetition_penalty = float(params.get("repetition_penalty", 1.0))
|
||||
|
@ -314,6 +314,7 @@ def generate_stream_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: di
|
|||
return_tensors="pt",
|
||||
return_dict=True
|
||||
).to(next(model.parameters()).device)
|
||||
|
||||
input_echo_len = len(model_inputs["input_ids"][0])
|
||||
streamer = TextIteratorStreamer(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -328,6 +329,7 @@ def generate_stream_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: di
|
|||
"top_p": top_p if temperature > 1e-5 else 0,
|
||||
"top_k": 1,
|
||||
'streamer': streamer,
|
||||
"eos_token_id": [151329, 151336, 151338],
|
||||
}
|
||||
if temperature > 1e-5:
|
||||
gen_kwargs["temperature"] = temperature
|
||||
|
@ -354,7 +356,7 @@ def generate_stream_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: di
|
|||
},
|
||||
}
|
||||
generation_thread.join()
|
||||
|
||||
print('\033[91m--generated_text\033[0m', generated_text)
|
||||
yield {
|
||||
"text": generated_text,
|
||||
"usage": {
|
||||
|
@ -391,18 +393,19 @@ if __name__ == "__main__":
|
|||
trust_remote_code=True,
|
||||
encode_special_tokens=True
|
||||
)
|
||||
model.eval().to(DEVICE)
|
||||
model.eval()
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
MODEL_PATH,
|
||||
trust_remote_code=True,
|
||||
encode_special_tokens=True
|
||||
MODEL_PATH,
|
||||
trust_remote_code=True,
|
||||
encode_special_tokens=True
|
||||
)
|
||||
model = AutoModel.from_pretrained(
|
||||
MODEL_PATH,
|
||||
torch_dtype=TORCH_TYPE,
|
||||
trust_remote_code=True,
|
||||
device_map="auto",
|
||||
).eval().to(DEVICE)
|
||||
).eval()
|
||||
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
||||
|
|
Loading…
Reference in New Issue