feat(candle_demo: 添加Rust-candle框架支持)

This commit is contained in:
donjuanplatinum 2024-07-27 19:45:22 -04:00
parent e1bc2691d4
commit 807e73978a
9 changed files with 4153 additions and 0 deletions

1
candle_demo/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
target

3163
candle_demo/Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

30
candle_demo/Cargo.toml Normal file
View File

@ -0,0 +1,30 @@
[workspace]
members = ["cli", "glm4"]
resolver = "2"
[workspace.package]
version = "0.1.0"
edition = "2021"
authors = ["Donjuan Platinum <donjuan@lecturify.net>"]
license = "GPL-2.0-only"
description = "ChatGlm"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[workspace.dependencies]
hf-hub = "0.3.2"
clap = { version = "4.5.6", features = ["derive"] }
tokenizers = "0.19.1"
serde_json = "1.0.120"
candle-core = "0.6.0"
# candle-transformers = "0.6.0"
candle-transformers = "0.6.0"
candle-examples = "0.6.0"
candle-nn = "0.6.0"
safetensors = "0.4.3"
accelerate-src = { version = "0.3.2"}
intel-mkl-src = { version = "0.8.1", features = ["mkl-static-lp64-iomp"] }
rand = "0.8.5"
owo-colors = "4.0.0"
glm4 = {path = "./glm4"}

View File

@ -0,0 +1,33 @@
[package]
name= "glm4-cli"
version.workspace = true
edition.workspace = true
authors.workspace = true
license.workspace = true
description.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
hf-hub = {workspace = true}
clap = { workspace = true}
tokenizers = {workspace = true}
serde_json = {workspace = true}
candle-core = {workspace = true}
candle-transformers = {workspace = true}
candle-examples = {workspace = true}
candle-nn = {workspace = true}
safetensors = {workspace = true}
accelerate-src = { workspace = true, optional = true}
intel-mkl-src = { workspace = true ,optional = true}
rand = { workspace = true}
owo-colors = {workspace = true}
glm4 = {workspace = true}
[build-dependencies]
bindgen_cuda = { version = "0.1.1", optional = true }
[features]
default = []
cuda = ["candle-core/cuda", "candle-nn/cuda", "candle-transformers/cuda", "dep:bindgen_cuda"]
accelerate = ["dep:accelerate-src", "candle-core/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
mkl = ["dep:intel-mkl-src", "candle-core/mkl", "candle-nn/mkl", "candle-transformers/mkl"]

100
candle_demo/cli/src/main.rs Executable file
View File

@ -0,0 +1,100 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle_core as candle;
use candle_core::DType;
use candle_nn::VarBuilder;
use clap::Parser;
use glm4::args::Args;
use glm4::glm4::*;
use glm4::TextGeneration;
use hf_hub::{Repo, RepoType};
use owo_colors::{self, OwoColorize};
use rand::Rng;
use tokenizers::Tokenizer;
fn main() -> Result<(), ()> {
let args = Args::parse();
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx().red(),
candle::utils::with_neon().red(),
candle::utils::with_simd128().red(),
candle::utils::with_f16c().red(),
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.95).red(),
args.repeat_penalty.red(),
args.repeat_last_n.red(),
);
println!("cache path {}", args.cache_path.blue());
let mut seed: u64 = 0;
if let Some(_seed) = args.seed {
seed = _seed;
} else {
let mut rng = rand::thread_rng();
seed = rng.gen();
}
println!("Using Seed {}", seed.red());
let api = hf_hub::api::sync::ApiBuilder::from_cache(hf_hub::Cache::new(args.cache_path.into()))
.build()
.unwrap();
let model_id = match args.model_id {
Some(model_id) => model_id.to_string(),
None => "THUDM/glm4-9b".to_string(),
};
let revision = match args.revision {
Some(rev) => rev.to_string(),
None => "main".to_string(),
};
let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => api
.model("THUDM/glm4-9b".to_string())
.get("tokenizer.json")
.unwrap(),
};
let filenames = match args.weight_file {
Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
None => {
candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json").unwrap()
}
};
let tokenizer = Tokenizer::from_file(tokenizer_filename).expect("Tokenizer Error");
let start = std::time::Instant::now();
let config = Config::glm4();
let device = candle_examples::device(args.cpu).unwrap();
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
println!("DType is {:?}", dtype.yellow());
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device).unwrap() };
let model = Model::new(&config, vb).unwrap();
println!("模型加载完毕 {:?}", start.elapsed().as_secs().green());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
args.verbose_prompt,
&device,
dtype,
);
pipeline.run(args.sample_len)?;
Ok(())
}

View File

@ -0,0 +1,34 @@
[package]
name = "glm4"
version.workspace = true
edition.workspace = true
authors.workspace = true
license.workspace = true
description.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
hf-hub = {workspace = true}
clap = { workspace = true}
tokenizers = {workspace = true}
serde_json = {workspace = true}
candle-core = {workspace = true}
candle-transformers = {workspace = true}
candle-examples = {workspace = true}
candle-nn = {workspace = true}
safetensors = {workspace = true}
accelerate-src = { workspace = true, optional = true}
intel-mkl-src = { workspace = true ,optional = true}
rand = { workspace = true}
owo-colors = {workspace = true}
[build-dependencies]
bindgen_cuda = { version = "0.1.1", optional = true }
[features]
default = []
cuda = ["candle-core/cuda", "candle-nn/cuda", "candle-transformers/cuda", "dep:bindgen_cuda"]
accelerate = ["dep:accelerate-src", "candle-core/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
mkl = ["dep:intel-mkl-src", "candle-core/mkl", "candle-nn/mkl", "candle-transformers/mkl"]

View File

@ -0,0 +1,51 @@
use clap::Parser;
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
pub struct Args {
/// Run on CPU rather than on GPU.
#[arg(name = "cache", short, long, default_value = ".")]
pub cache_path: String,
#[arg(long)]
pub cpu: bool,
/// Display the token for the specified prompt.
#[arg(long)]
pub verbose_prompt: bool,
/// The temperature used to generate samples.
#[arg(long)]
pub temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
pub top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long)]
pub seed: Option<u64>,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 5000)]
pub sample_len: usize,
#[arg(long)]
pub model_id: Option<String>,
#[arg(long)]
pub revision: Option<String>,
#[arg(long)]
pub weight_file: Option<String>,
#[arg(long)]
pub tokenizer: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
pub repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
pub repeat_last_n: usize,
}

View File

@ -0,0 +1,601 @@
use candle_core as candle;
use candle_core::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
use candle_transformers::models::with_tracing::{linear_b as linear, Linear};
#[derive(Debug, Clone)]
pub struct Config {
pub num_layers: usize,
pub padded_vocab_size: usize,
pub hidden_size: usize,
pub ffn_hidden_size: usize,
pub kv_channels: usize,
pub num_attention_heads: usize,
pub seq_length: usize,
pub layernorm_epsilon: f64,
pub rmsnorm: bool,
pub apply_residual_connection_post_layernorm: bool,
pub post_layer_norm: bool,
pub add_bias_linear: bool,
pub add_qkv_bias: bool,
pub bias_dropout_fusion: bool,
pub multi_query_attention: bool,
pub multi_query_group_num: usize,
pub apply_query_key_layer_scaling: bool,
pub attention_softmax_in_fp32: bool,
pub fp32_residual_connection: bool,
}
impl Config {
pub fn glm4() -> Self {
Self {
num_layers: 40,
padded_vocab_size: 151552,
hidden_size: 4096,
ffn_hidden_size: 13696,
kv_channels: 128,
num_attention_heads: 32,
seq_length: 131072,
layernorm_epsilon: 1e-5,
rmsnorm: true,
apply_residual_connection_post_layernorm: false,
post_layer_norm: true,
add_bias_linear: false,
add_qkv_bias: true,
bias_dropout_fusion: true,
multi_query_attention: true,
multi_query_group_num: 2,
apply_query_key_layer_scaling: true,
attention_softmax_in_fp32: true,
fp32_residual_connection: false,
}
}
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
cache: Tensor,
}
impl RotaryEmbedding {
fn new(cfg: &Config, dtype: DType, dev: &Device) -> Result<Self> {
let rotary_dim = cfg.kv_channels;
let n_elem = rotary_dim / 2;
let inv_freq: Vec<_> = (0..n_elem)
.step_by(2)
.map(|i| 1f32 / 10_000f64.powf(i as f64 / n_elem as f64) as f32)
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
let t = Tensor::arange(0u32, cfg.seq_length as u32, dev)?
.to_dtype(dtype)
.expect("unalbe to dytpe in Rotray Embedding new")
.reshape((cfg.seq_length, 1))?;
let freqs = t.matmul(&inv_freq)?;
let cache = Tensor::stack(&[&freqs.cos()?, &freqs.sin()?], D::Minus1)?;
Ok(Self { cache })
}
fn apply(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
let (seqlen, _b, np, _hn) = xs.dims4()?;
let cache = self.cache.narrow(0, seqlen_offset, seqlen)?;
let rot_dim = cache.dim(D::Minus2)? * 2;
let (xs, xs_pass) = (
xs.narrow(D::Minus1, 0, rot_dim)?,
xs.narrow(D::Minus1, rot_dim, rot_dim)?,
);
let xshaped = xs.reshape((seqlen, (), np, rot_dim / 2, 2))?;
let cache = cache.reshape((seqlen, (), 1, rot_dim / 2, 2))?;
let (xshaped0, xshaped1) = (
xshaped.i((.., .., .., .., 0))?,
xshaped.i((.., .., .., .., 1))?,
);
let (cache0, cache1) = (cache.i((.., .., .., .., 0))?, cache.i((.., .., .., .., 1))?);
let xs_out = Tensor::stack(
&[
(xshaped0.broadcast_mul(&cache0)? - xshaped1.broadcast_mul(&cache1)?)?,
(xshaped1.broadcast_mul(&cache0)? + xshaped0.broadcast_mul(&cache1)?)?,
],
D::Minus1,
)?;
let xs_out = xs_out.flatten_from(3)?;
Tensor::cat(&[xs_out, xs_pass], D::Minus1)
}
}
#[derive(Debug, Clone)]
struct CoreAttention {
coeff: Option<f64>,
norm_factor: f64,
dtype: DType,
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32, dtype: DType) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true.to_dtype(dtype)?, on_false)?;
Ok(m)
}
impl CoreAttention {
fn new(layer_number: usize, cfg: &Config, dtype: DType) -> Result<Self> {
let norm_factor = (cfg.kv_channels as f64).sqrt();
let (norm_factor, coeff) = if cfg.apply_query_key_layer_scaling {
let coeff = f64::max(1.0, layer_number as f64);
(norm_factor * coeff, Some(coeff))
} else {
(norm_factor, None)
};
Ok(Self {
coeff,
norm_factor,
dtype,
})
}
fn forward(
&self,
query_layer: &Tensor,
key_layer: &Tensor,
value_layer: &Tensor,
attention_mask: &Option<Tensor>,
) -> Result<Tensor> {
let output_size = (
query_layer.dim(1)?, // b
query_layer.dim(2)?, // np
query_layer.dim(0)?, // sq
key_layer.dim(0)?, // sk
);
let query_layer =
query_layer.reshape((output_size.2, output_size.0 * output_size.1, ()))?;
let key_layer = key_layer.reshape((output_size.3, output_size.0 * output_size.1, ()))?;
let matmul_result = Tensor::matmul(
&query_layer.transpose(0, 1)?.contiguous()?,
&key_layer.transpose(0, 1)?.transpose(1, 2)?.contiguous()?,
)?;
let matmul_result = (matmul_result / self.norm_factor)?.reshape(output_size)?;
let matmul_result = match self.coeff {
None => matmul_result,
Some(coeff) => (matmul_result * coeff)?,
};
let attention_scores = match attention_mask {
Some(mask) => masked_fill(
&matmul_result,
&mask.broadcast_left((matmul_result.dim(0)?, matmul_result.dim(1)?))?,
f32::NEG_INFINITY,
self.dtype,
)?,
None => matmul_result,
};
let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
let output_size = (
value_layer.dim(1)?,
value_layer.dim(2)?,
query_layer.dim(0)?,
value_layer.dim(3)?,
);
let value_layer =
value_layer.reshape((value_layer.dim(0)?, output_size.0 * output_size.1, ()))?;
let attention_probs =
attention_probs.reshape((output_size.0 * output_size.1, output_size.2, ()))?;
let context_layer = Tensor::matmul(
&attention_probs.contiguous()?,
&value_layer.transpose(0, 1)?.contiguous()?,
)?;
let context_layer = context_layer.reshape(output_size)?;
let context_layer = context_layer.permute((2, 0, 1, 3))?.contiguous()?;
context_layer.flatten_from(D::Minus2)
}
}
#[derive(Debug, Clone)]
struct SelfAttention {
query_key_value: Linear,
core_attention: CoreAttention,
dense: Linear,
multi_query_attention: bool,
num_attention_heads_per_partition: usize,
num_multi_query_groups_per_partition: usize,
hidden_size_per_attention_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
}
impl SelfAttention {
fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let projection_size = cfg.kv_channels * cfg.num_attention_heads;
let hidden_size_per_attention_head = projection_size / cfg.num_attention_heads;
let qkv_hidden_size = if cfg.multi_query_attention {
projection_size + 2 * hidden_size_per_attention_head * cfg.multi_query_group_num
} else {
3 * projection_size
};
let query_key_value = linear(
cfg.hidden_size,
qkv_hidden_size,
cfg.add_bias_linear || cfg.add_qkv_bias,
vb.pp("query_key_value"),
)?;
let core_attention = CoreAttention::new(layer_number, cfg, vb.dtype())?;
let dense = linear(
cfg.hidden_size,
cfg.hidden_size,
cfg.add_bias_linear,
vb.pp("dense"),
)?;
Ok(Self {
query_key_value,
core_attention,
dense,
multi_query_attention: cfg.multi_query_attention,
num_attention_heads_per_partition: cfg.num_attention_heads,
num_multi_query_groups_per_partition: cfg.multi_query_group_num,
hidden_size_per_attention_head: cfg.kv_channels,
kv_cache: None,
})
}
fn reset_kv_cache(&mut self) {
self.kv_cache = None
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Option<Tensor>,
rotary_emb: &RotaryEmbedding,
) -> Result<Tensor> {
let mixed_x_layer = xs.apply(&self.query_key_value)?;
if !self.multi_query_attention {
candle::bail!("only multi_query_attention=true is supported")
}
let hpa = self.hidden_size_per_attention_head;
let query_layer =
mixed_x_layer.narrow(D::Minus1, 0, self.num_attention_heads_per_partition * hpa)?;
let key_layer = mixed_x_layer.narrow(
D::Minus1,
self.num_attention_heads_per_partition * hpa,
self.num_multi_query_groups_per_partition * hpa,
)?;
let value_layer = mixed_x_layer.narrow(
D::Minus1,
self.num_attention_heads_per_partition * hpa
+ self.num_multi_query_groups_per_partition * hpa,
self.num_multi_query_groups_per_partition * hpa,
)?;
let query_layer = query_layer.reshape((
query_layer.dim(0)?,
query_layer.dim(1)?,
self.num_attention_heads_per_partition,
hpa,
))?;
let key_layer = key_layer.reshape((
key_layer.dim(0)?,
key_layer.dim(1)?,
self.num_multi_query_groups_per_partition,
hpa,
))?;
let value_layer = value_layer.reshape((
value_layer.dim(0)?,
value_layer.dim(1)?,
self.num_multi_query_groups_per_partition,
hpa,
))?;
// Rotary embeddings.
let seqlen_offset = match &self.kv_cache {
None => 0,
Some((prev_k, _)) => prev_k.dim(0)?,
};
let query_layer = rotary_emb.apply(&query_layer, seqlen_offset)?;
let key_layer = rotary_emb.apply(&key_layer, seqlen_offset)?;
// KV cache.
let (key_layer, value_layer) = match &self.kv_cache {
None => (key_layer, value_layer),
Some((prev_k, prev_v)) => {
let k = Tensor::cat(&[prev_k, &key_layer], 0)?;
let v = Tensor::cat(&[prev_v, &value_layer], 0)?;
(k, v)
}
};
self.kv_cache = Some((key_layer.clone(), value_layer.clone()));
// Repeat KV.
let ratio =
self.num_attention_heads_per_partition / self.num_multi_query_groups_per_partition;
let key_layer = {
let (d0, d1, d2, d3) = key_layer.dims4()?;
key_layer
.unsqueeze(D::Minus2)?
.expand((d0, d1, d2, ratio, d3))?
.reshape((
d0,
d1,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
))?
};
let value_layer = {
let (d0, d1, d2, d3) = value_layer.dims4()?;
value_layer
.unsqueeze(D::Minus2)?
.expand((d0, d1, d2, ratio, d3))?
.reshape((
d0,
d1,
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
))?
};
let context_layer =
self.core_attention
.forward(&query_layer, &key_layer, &value_layer, attention_mask)?;
let output = context_layer.apply(&self.dense)?;
Ok(output)
}
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug, Clone)]
struct MLP {
dense_h_to_4h: Linear,
dense_4h_to_h: Linear,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let dense_h_to_4h = linear(
cfg.hidden_size,
cfg.ffn_hidden_size * 2,
cfg.add_bias_linear,
vb.pp("dense_h_to_4h"),
)?;
let dense_4h_to_h = linear(
cfg.ffn_hidden_size,
cfg.hidden_size,
cfg.add_bias_linear,
vb.pp("dense_4h_to_h"),
)?;
Ok(Self {
dense_4h_to_h,
dense_h_to_4h,
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.dense_h_to_4h)?
.apply(&candle_nn::Activation::Swiglu)?
.apply(&self.dense_4h_to_h)
}
}
#[derive(Debug, Clone)]
struct Block {
input_layernorm: candle_nn::LayerNorm,
self_attention: SelfAttention,
post_attention_layernorm: candle_nn::LayerNorm,
mlp: MLP,
apply_residual_connection_post_layernorm: bool,
}
impl Block {
fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let input_layernorm = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("input_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("input_layernorm"),
)?
};
let post_attention_layernorm = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("post_attention_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("post_attention_layernorm"),
)?
};
let self_attention = SelfAttention::new(layer_number, cfg, vb.pp("self_attention"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
Ok(Self {
input_layernorm,
self_attention,
post_attention_layernorm,
mlp,
apply_residual_connection_post_layernorm: cfg.apply_residual_connection_post_layernorm,
})
}
fn reset_kv_cache(&mut self) {
self.self_attention.reset_kv_cache()
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: &Option<Tensor>,
rotary_emb: &RotaryEmbedding,
) -> Result<Tensor> {
let layernorm_output = xs.apply(&self.input_layernorm)?;
let attention_output =
self.self_attention
.forward(&layernorm_output, attention_mask, rotary_emb)?;
let residual = if self.apply_residual_connection_post_layernorm {
&layernorm_output
} else {
xs
};
let layernorm_input = (residual + attention_output)?;
let layernorm_output = layernorm_input.apply(&self.post_attention_layernorm)?;
let mlp_output = layernorm_output.apply(&self.mlp)?;
let residual = if self.apply_residual_connection_post_layernorm {
&layernorm_output
} else {
&layernorm_input
};
mlp_output + residual
}
}
#[derive(Debug, Clone)]
struct Transformer {
layers: Vec<Block>,
final_layernorm: Option<candle_nn::LayerNorm>,
rotary_emb: RotaryEmbedding,
}
impl Transformer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_l = vb.pp("layers");
let mut layers = Vec::with_capacity(cfg.num_layers);
println!("transofrmer layers create");
let mut count = 0;
for layer_index in 0..cfg.num_layers {
count += 1;
println!("for layer index in {} total is {} ", count, cfg.num_layers);
let block = Block::new(layer_index + 1, cfg, vb_l.pp(layer_index))?;
layers.push(block)
}
let final_layernorm = if cfg.post_layer_norm {
let ln = if cfg.rmsnorm {
candle_nn::rms_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("final_layernorm"),
)?
.into_inner()
} else {
candle_nn::layer_norm(
cfg.hidden_size,
cfg.layernorm_epsilon,
vb.pp("final_layernorm"),
)?
};
Some(ln)
} else {
None
};
let rotary_emb = RotaryEmbedding::new(cfg, vb.dtype(), vb.device())?;
Ok(Self {
layers,
final_layernorm,
rotary_emb,
})
}
fn reset_kv_cache(&mut self) {
for block in self.layers.iter_mut() {
block.reset_kv_cache()
}
}
fn forward(&mut self, xs: &Tensor, attention_mask: &Option<Tensor>) -> Result<Tensor> {
let mut xs = xs.clone();
for block in self.layers.iter_mut() {
xs = block.forward(&xs, attention_mask, &self.rotary_emb)?
}
match self.final_layernorm.as_ref() {
None => Ok(xs),
Some(ln) => xs.apply(ln),
}
}
}
#[derive(Debug, Clone)]
struct Embedding {
word_embeddings: candle_nn::Embedding,
fp32_residual_connection: bool,
}
impl Embedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let word_embeddings = candle_nn::embedding(
cfg.padded_vocab_size,
cfg.hidden_size,
vb.pp("word_embeddings"),
)?;
Ok(Self {
word_embeddings,
fp32_residual_connection: cfg.fp32_residual_connection,
})
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.word_embeddings.forward(xs)?.transpose(0, 1)?; // b,s,h -> s,b,h
if self.fp32_residual_connection {
xs.to_dtype(candle::DType::F32)
} else {
xs.contiguous()
}
}
}
#[derive(Debug, Clone)]
pub struct Model {
embedding: Embedding,
encoder: Transformer,
output_layer: Linear,
}
fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("transformer");
let embedding = Embedding::new(cfg, vb.pp("embedding"))?;
let encoder = Transformer::new(cfg, vb.pp("encoder"))?;
let output_layer = linear(
cfg.hidden_size,
cfg.padded_vocab_size,
false,
vb.pp("output_layer"),
)?;
Ok(Self {
embedding,
encoder,
output_layer,
})
}
pub fn reset_kv_cache(&mut self) {
self.encoder.reset_kv_cache()
}
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let (_b_size, seq_len) = xs.dims2()?;
let input_embeds = xs.apply(&self.embedding)?;
let attention_mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.device())?)
};
let xs = self.encoder.forward(&input_embeds, &attention_mask)?;
let lm_logits = xs.i(seq_len - 1)?.apply(&self.output_layer)?;
Ok(lm_logits)
}
}

140
candle_demo/glm4/src/lib.rs Normal file
View File

@ -0,0 +1,140 @@
pub mod glm4;
pub mod args;
use candle_core::{DType, Device, Tensor};
use candle_transformers::generation::LogitsProcessor;
use glm4::*;
use owo_colors::{self, OwoColorize};
use std::io::BufRead;
use std::io::BufReader;
use tokenizers::Tokenizer;
pub struct TextGeneration {
model: Model,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
dtype: DType,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
pub fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
verbose_prompt: bool,
device: &Device,
dtype: DType,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer,
logits_processor,
repeat_penalty,
repeat_last_n,
verbose_prompt,
device: device.clone(),
dtype,
}
}
pub fn run(&mut self, sample_len: usize) -> Result<(), ()> {
use std::io::Write;
println!("[欢迎使用GLM-4,请输入prompt]");
let stdin = std::io::stdin();
let reader = BufReader::new(stdin);
// 从标准输入读取prompt
for line in reader.lines() {
let line = line.expect("Failed to read line");
let tokens = self.tokenizer.encode(line, true).expect("tokens error");
if tokens.is_empty() {
panic!("Empty prompts are not supported in the chatglm model.")
}
if self.verbose_prompt {
for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
let token = token.replace('▁', " ").replace("<0x0A>", "\n");
println!("{id:7} -> '{token}'");
}
}
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
Some(token) => *token,
None => panic!("cannot find the endoftext token"),
};
let mut tokens = tokens.get_ids().to_vec();
let mut generated_tokens = 0usize;
std::io::stdout().flush().expect("output flush error");
let start_gen = std::time::Instant::now();
// println!("\n 开始生成");
println!("samplelen {}", sample_len.blue());
let mut result = vec![];
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)
.unwrap()
.unsqueeze(0)
.expect("create tensor input error");
let logits = self.model.forward(&input).unwrap();
let logits = logits.squeeze(0).unwrap().to_dtype(self.dtype).unwrap();
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)
.unwrap()
};
let next_token = self.logits_processor.sample(&logits).unwrap();
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
let token = self
.tokenizer
.decode(&[next_token], true)
.expect("Token error");
if self.verbose_prompt {
println!(
"[Index: {}] [Raw Token: {}] [Decode Token: {}]",
index.blue(),
next_token.green(),
token.yellow()
);
}
result.push(token);
std::io::stdout().flush().unwrap();
}
let dt = start_gen.elapsed();
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
println!("Result:");
for tokens in result {
print!("{tokens}");
}
self.model.reset_kv_cache(); // 清理模型kv
}
Ok(())
}
}