Merge pull request #556 from sixsixcoder/main

update that multi-GPUs inference with transformers in glm-4 and glm-4v
This commit is contained in:
Yuxuan.Zhang 2024-09-11 19:52:17 +08:00 committed by GitHub
commit 81af3cfc5a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 74 additions and 29 deletions

View File

@ -146,10 +146,14 @@ GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
device = "cuda"
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 设置 GPU 编号,如果单机单卡指定一个,单机多卡指定多个 GPU 编号
MODEL_PATH = "THUDM/glm-4-9b-chat"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = "你好"
@ -162,11 +166,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4-9b-chat",
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
@ -216,10 +221,14 @@ print(outputs[0].outputs[0].text)
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
device = "cuda"
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 设置 GPU 编号,如果单机单卡指定一个,单机多卡指定多个 GPU 编号
MODEL_PATH = "THUDM/glm-4v-9b"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
@ -229,11 +238,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "conten
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():

View File

@ -163,10 +163,14 @@ Use the transformers backend for inference:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
device = "cuda"
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4-9b-chat"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = "你好"
@ -179,11 +183,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4-9b-chat",
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
@ -233,12 +238,16 @@ Use the transformers backend for inference:
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
device = "cuda"
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Set the GPU number. If inference with multiple GPUs, set multiple GPU numbers
MODEL_PATH = "THUDM/glm-4v-9b"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
query = 'display this image'
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
@ -246,11 +255,12 @@ inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "conten
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
MODEL_PATH,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
trust_remote_code=True,
device_map="auto"
).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():

View File

@ -17,8 +17,10 @@ from transformers import (
AutoModel,
TextIteratorStreamer
)
from peft import PeftModelForCausalLM
from PIL import Image
from io import BytesIO
from pathlib import Path
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
@ -365,16 +367,39 @@ torch.cuda.empty_cache()
if __name__ == "__main__":
MODEL_PATH = sys.argv[1]
tokenizer = AutoTokenizer.from_pretrained(
model_dir = Path(MODEL_PATH).expanduser().resolve()
if (model_dir / 'adapter_config.json').exists():
import json
with open(model_dir / 'adapter_config.json', 'r', encoding='utf-8') as file:
config = json.load(file)
model = AutoModel.from_pretrained(
config.get('base_model_name_or_path'),
trust_remote_code=True,
device_map='auto',
torch_dtype=TORCH_TYPE
)
model = PeftModelForCausalLM.from_pretrained(
model=model,
model_id=model_dir,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
config.get('base_model_name_or_path'),
trust_remote_code=True,
encode_special_tokens=True
)
model.eval().to(DEVICE)
else:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
encode_special_tokens=True
)
model = AutoModel.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
device_map="auto",
).eval().to(DEVICE)
)
model = AutoModel.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
device_map="auto",
).eval().to(DEVICE)
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)