lora adapter with vllm

This commit is contained in:
sixsixcoder 2024-09-04 10:30:21 +00:00
parent d4a3b7ddba
commit af2fc45585
1 changed files with 0 additions and 116 deletions

View File

@ -1,116 +0,0 @@
"""
This script creates a CLI demo that utilizes LoRA adapters with vLLM backend for the GLM-4-9b model,
allowing users to interact with the model through a command-line interface.
Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.
Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
import time
import asyncio
from transformers import AutoTokenizer
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from typing import List, Dict
from vllm.lora.request import LoRARequest
MODEL_PATH = 'THUDM/GLM-4'
LORA_PATH = '' # 你的 lora adapter 路径
def load_model_and_tokenizer(model_dir: str):
engine_args = AsyncEngineArgs(
model=model_dir,
tokenizer=model_dir,
enable_lora=True, # 新增
max_loras=1, # 新增
max_lora_rank=8, ## 新增
max_num_seqs=256, ## 新增
tensor_parallel_size=2,
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.5,
max_model_len=2048,
enforce_eager=True,
worker_use_ray=True,
engine_use_ray=False,
disable_log_requests=True
# 如果遇见 OOM 现象,建议开启下述参数
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
tokenizer = AutoTokenizer.from_pretrained(
model_dir,
trust_remote_code=True,
encode_special_tokens=True
)
engine = AsyncLLMEngine.from_engine_args(engine_args)
return engine, tokenizer
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
async def vllm_gen(lora_path: str, messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
params_dict = {
"n": 1,
"best_of": 1,
"presence_penalty": 1.0,
"frequency_penalty": 0.0,
"temperature": temperature,
"top_p": top_p,
"top_k": -1,
"use_beam_search": False,
"length_penalty": 1,
"early_stopping": False,
"ignore_eos": False,
"max_tokens": max_dec_len,
"logprobs": None,
"prompt_logprobs": None,
"skip_special_tokens": True
}
sampling_params = SamplingParams(**params_dict)
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}", lora_request=LoRARequest("glm-4-lora", 1, lora_path=lora_path)):
yield output.outputs[0].text
async def chat():
history = []
max_length = 8192
top_p = 0.8
temperature = 0
print("Welcome to the GLM-4-9B CLI (Lora) chat. Type your messages below.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
break
history.append([user_input, ""])
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
print("\nGLM-4: ", end="")
current_length = 0
output = ""
async for output in vllm_gen(LORA_PATH, messages, top_p, temperature, max_length):
print(output[current_length:], end="", flush=True)
current_length = len(output)
history[-1][1] = output
if __name__ == "__main__":
asyncio.run(chat())