lora adapter with vllm
This commit is contained in:
parent
f0d67ff4a4
commit
fafa33d351
|
@ -11,6 +11,7 @@ Read this in [English](README_en.md)
|
||||||
|
|
||||||
## 项目更新
|
## 项目更新
|
||||||
|
|
||||||
|
- 🔥🔥 **News**: ```2024/09/04```: 增加了在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM 演示代码
|
||||||
- 🔥🔥 **News**: ```2024/08/15```: 我们开源具备长文本输出能力(单轮对话大模型输出可超过1万token)
|
- 🔥🔥 **News**: ```2024/08/15```: 我们开源具备长文本输出能力(单轮对话大模型输出可超过1万token)
|
||||||
的模型 [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b)
|
的模型 [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b)
|
||||||
以及数据集 [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k),
|
以及数据集 [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k),
|
||||||
|
|
|
@ -9,6 +9,7 @@
|
||||||
|
|
||||||
## Update
|
## Update
|
||||||
|
|
||||||
|
- 🔥🔥 **News**: ```2024/09/04```: Add demo code for using vLLM with LoRA adapter on the GLM-4-9B-Chat model.
|
||||||
- 🔥🔥 **News**: ```2024/08/15```: We have open-sourced a model with long-text output capability (single turn LLM output can exceed
|
- 🔥🔥 **News**: ```2024/08/15```: We have open-sourced a model with long-text output capability (single turn LLM output can exceed
|
||||||
10K tokens) [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b) and the
|
10K tokens) [longwriter-glm4-9b](https://huggingface.co/THUDM/LongWriter-glm4-9b) and the
|
||||||
dataset [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k). You're welcome
|
dataset [LongWriter-6k](https://huggingface.co/datasets/THUDM/LongWriter-6k). You're welcome
|
||||||
|
|
|
@ -126,6 +126,12 @@ python openai_api_server.py
|
||||||
python openai_api_request.py
|
python openai_api_request.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### 在 GLM-4-9B-Chat 模型上使用带有 Lora adapter 的 vLLM
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python vllm_cli_lora_demo.py
|
||||||
|
```
|
||||||
|
|
||||||
## 压力测试
|
## 压力测试
|
||||||
|
|
||||||
用户可以在自己的设备上使用本代码测试模型在 transformers后端的生成速度:
|
用户可以在自己的设备上使用本代码测试模型在 transformers后端的生成速度:
|
||||||
|
|
|
@ -132,6 +132,13 @@ Client request:
|
||||||
python openai_api_request.py
|
python openai_api_request.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### LoRA adapters with vLLM
|
||||||
|
+ use LoRA adapters with vLLM on GLM-4-9B-Chat model.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python vllm_cli_lora_demo.py
|
||||||
|
```
|
||||||
|
|
||||||
## Stress test
|
## Stress test
|
||||||
|
|
||||||
Users can use this code to test the generation speed of the model on the transformers backend on their own devices:
|
Users can use this code to test the generation speed of the model on the transformers backend on their own devices:
|
||||||
|
|
|
@ -0,0 +1,116 @@
|
||||||
|
"""
|
||||||
|
This script creates a CLI demo that utilizes LoRA adapters with vLLM backend for the GLM-4-9b model,
|
||||||
|
allowing users to interact with the model through a command-line interface.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
- Run the script to start the CLI demo.
|
||||||
|
- Interact with the model by typing questions and receiving responses.
|
||||||
|
|
||||||
|
Note: The script includes a modification to handle markdown to plain text conversion,
|
||||||
|
ensuring that the CLI interface displays formatted text correctly.
|
||||||
|
"""
|
||||||
|
import time
|
||||||
|
import asyncio
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
|
||||||
|
from typing import List, Dict
|
||||||
|
from vllm.lora.request import LoRARequest
|
||||||
|
|
||||||
|
MODEL_PATH = 'THUDM/GLM-4'
|
||||||
|
LORA_PATH = '' # 你的 lora adapter 路径
|
||||||
|
|
||||||
|
def load_model_and_tokenizer(model_dir: str):
|
||||||
|
engine_args = AsyncEngineArgs(
|
||||||
|
model=model_dir,
|
||||||
|
tokenizer=model_dir,
|
||||||
|
enable_lora=True, # 新增
|
||||||
|
max_loras=1, # 新增
|
||||||
|
max_lora_rank=8, ## 新增
|
||||||
|
max_num_seqs=256, ## 新增
|
||||||
|
tensor_parallel_size=2,
|
||||||
|
dtype="bfloat16",
|
||||||
|
trust_remote_code=True,
|
||||||
|
gpu_memory_utilization=0.5,
|
||||||
|
max_model_len=2048,
|
||||||
|
enforce_eager=True,
|
||||||
|
worker_use_ray=True,
|
||||||
|
engine_use_ray=False,
|
||||||
|
disable_log_requests=True
|
||||||
|
# 如果遇见 OOM 现象,建议开启下述参数
|
||||||
|
# enable_chunked_prefill=True,
|
||||||
|
# max_num_batched_tokens=8192
|
||||||
|
)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_dir,
|
||||||
|
trust_remote_code=True,
|
||||||
|
encode_special_tokens=True
|
||||||
|
)
|
||||||
|
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||||
|
return engine, tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
|
||||||
|
|
||||||
|
|
||||||
|
async def vllm_gen(lora_path: str, messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
|
||||||
|
inputs = tokenizer.apply_chat_template(
|
||||||
|
messages,
|
||||||
|
add_generation_prompt=True,
|
||||||
|
tokenize=False
|
||||||
|
)
|
||||||
|
params_dict = {
|
||||||
|
"n": 1,
|
||||||
|
"best_of": 1,
|
||||||
|
"presence_penalty": 1.0,
|
||||||
|
"frequency_penalty": 0.0,
|
||||||
|
"temperature": temperature,
|
||||||
|
"top_p": top_p,
|
||||||
|
"top_k": -1,
|
||||||
|
"use_beam_search": False,
|
||||||
|
"length_penalty": 1,
|
||||||
|
"early_stopping": False,
|
||||||
|
"ignore_eos": False,
|
||||||
|
"max_tokens": max_dec_len,
|
||||||
|
"logprobs": None,
|
||||||
|
"prompt_logprobs": None,
|
||||||
|
"skip_special_tokens": True
|
||||||
|
}
|
||||||
|
sampling_params = SamplingParams(**params_dict)
|
||||||
|
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}", lora_request=LoRARequest("glm-4-lora", 1, lora_path=lora_path)):
|
||||||
|
yield output.outputs[0].text
|
||||||
|
|
||||||
|
|
||||||
|
async def chat():
|
||||||
|
history = []
|
||||||
|
max_length = 8192
|
||||||
|
top_p = 0.8
|
||||||
|
temperature = 0
|
||||||
|
|
||||||
|
print("Welcome to the GLM-4-9B CLI (Lora) chat. Type your messages below.")
|
||||||
|
while True:
|
||||||
|
user_input = input("\nYou: ")
|
||||||
|
if user_input.lower() in ["exit", "quit"]:
|
||||||
|
break
|
||||||
|
history.append([user_input, ""])
|
||||||
|
|
||||||
|
messages = []
|
||||||
|
for idx, (user_msg, model_msg) in enumerate(history):
|
||||||
|
if idx == len(history) - 1 and not model_msg:
|
||||||
|
messages.append({"role": "user", "content": user_msg})
|
||||||
|
break
|
||||||
|
if user_msg:
|
||||||
|
messages.append({"role": "user", "content": user_msg})
|
||||||
|
if model_msg:
|
||||||
|
messages.append({"role": "assistant", "content": model_msg})
|
||||||
|
|
||||||
|
print("\nGLM-4: ", end="")
|
||||||
|
current_length = 0
|
||||||
|
output = ""
|
||||||
|
async for output in vllm_gen(LORA_PATH, messages, top_p, temperature, max_length):
|
||||||
|
print(output[current_length:], end="", flush=True)
|
||||||
|
current_length = len(output)
|
||||||
|
history[-1][1] = output
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(chat())
|
Loading…
Reference in New Issue