import gc import threading import time import base64 import sys from contextlib import asynccontextmanager from typing import List, Literal, Union, Tuple, Optional import torch import uvicorn import requests from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field from sse_starlette.sse import EventSourceResponse from transformers import ( AutoTokenizer, AutoModel, TextIteratorStreamer ) from peft import PeftModelForCausalLM from PIL import Image from io import BytesIO from pathlib import Path TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 @asynccontextmanager async def lifespan(app: FastAPI): """ An asynchronous context manager for managing the lifecycle of the FastAPI app. It ensures that GPU memory is cleared after the app's lifecycle ends, which is essential for efficient resource management in GPU environments. """ yield if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class ModelCard(BaseModel): """ A Pydantic model representing a model card, which provides metadata about a machine learning model. It includes fields like model ID, owner, and creation time. """ id: str object: str = "model" created: int = Field(default_factory=lambda: int(time.time())) owned_by: str = "owner" root: Optional[str] = None parent: Optional[str] = None permission: Optional[list] = None class ModelList(BaseModel): object: str = "list" data: List[ModelCard] = [] class ImageUrl(BaseModel): url: str class TextContent(BaseModel): type: Literal["text"] text: str class ImageUrlContent(BaseModel): type: Literal["image_url"] image_url: ImageUrl ContentItem = Union[TextContent, ImageUrlContent] class ChatMessageInput(BaseModel): role: Literal["user", "assistant", "system"] content: Union[str, List[ContentItem]] name: Optional[str] = None class ChatMessageResponse(BaseModel): role: Literal["assistant"] content: str = None name: Optional[str] = None class DeltaMessage(BaseModel): role: Optional[Literal["user", "assistant", "system"]] = None content: Optional[str] = None class ChatCompletionRequest(BaseModel): model: str messages: List[ChatMessageInput] temperature: Optional[float] = 0.8 top_p: Optional[float] = 0.8 max_tokens: Optional[int] = None stream: Optional[bool] = False # Additional parameters repetition_penalty: Optional[float] = 1.0 class ChatCompletionResponseChoice(BaseModel): index: int message: ChatMessageResponse class ChatCompletionResponseStreamChoice(BaseModel): index: int delta: DeltaMessage class UsageInfo(BaseModel): prompt_tokens: int = 0 total_tokens: int = 0 completion_tokens: Optional[int] = 0 class ChatCompletionResponse(BaseModel): model: str object: Literal["chat.completion", "chat.completion.chunk"] choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]] created: Optional[int] = Field(default_factory=lambda: int(time.time())) usage: Optional[UsageInfo] = None @app.get("/v1/models", response_model=ModelList) async def list_models(): """ An endpoint to list available models. It returns a list of model cards. This is useful for clients to query and understand what models are available for use. """ model_card = ModelCard(id="GLM-4v-9b") return ModelList(data=[model_card]) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion(request: ChatCompletionRequest): global model, tokenizer if len(request.messages) < 1 or request.messages[-1].role == "assistant": raise HTTPException(status_code=400, detail="Invalid request") gen_params = dict( messages=request.messages, temperature=request.temperature, top_p=request.top_p, max_tokens=request.max_tokens or 1024, echo=False, stream=request.stream, repetition_penalty=request.repetition_penalty ) if request.stream: generate = predict(request.model, gen_params) return EventSourceResponse(generate, media_type="text/event-stream") response = generate_glm4v(model, tokenizer, gen_params) usage = UsageInfo() message = ChatMessageResponse( role="assistant", content=response["text"], ) choice_data = ChatCompletionResponseChoice( index=0, message=message, ) task_usage = UsageInfo.model_validate(response["usage"]) for usage_key, usage_value in task_usage.model_dump().items(): setattr(usage, usage_key, getattr(usage, usage_key) + usage_value) return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage) def predict(model_id: str, params: dict): global model, tokenizer choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(role="assistant"), finish_reason=None ) chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk") yield "{}".format(chunk.model_dump_json(exclude_unset=True)) previous_text = "" for new_response in generate_stream_glm4v(model, tokenizer, params): decoded_unicode = new_response["text"] delta_text = decoded_unicode[len(previous_text):] previous_text = decoded_unicode delta = DeltaMessage(content=delta_text, role="assistant") choice_data = ChatCompletionResponseStreamChoice(index=0, delta=delta) chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk") yield "{}".format(chunk.model_dump_json(exclude_unset=True)) choice_data = ChatCompletionResponseStreamChoice(index=0, delta=DeltaMessage()) chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk") yield "{}".format(chunk.model_dump_json(exclude_unset=True)) def generate_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: dict): """ Generates a response using the GLM-4v-9b model. It processes the chat history and image data, if any, and then invokes the model to generate a response. """ response = None for response in generate_stream_glm4v(model, tokenizer, params): pass return response def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[ Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]: """ Process history messages to extract text, identify the last user query, and convert base64 encoded image URLs to PIL images. Args: messages(List[ChatMessageInput]): List of ChatMessageInput objects. return: A tuple of three elements: - The last user query as a string. - Text history formatted as a list of tuples for the model. - List of PIL Image objects extracted from the messages. """ formatted_history = [] image_list = [] last_user_query = '' for i, message in enumerate(messages): role = message.role content = message.content if isinstance(content, list): # text text_content = ' '.join(item.text for item in content if isinstance(item, TextContent)) else: text_content = content if isinstance(content, list): # image for item in content: if isinstance(item, ImageUrlContent): image_url = item.image_url.url if image_url.startswith("data:image/jpeg;base64,"): base64_encoded_image = image_url.split("data:image/jpeg;base64,")[1] image_data = base64.b64decode(base64_encoded_image) image = Image.open(BytesIO(image_data)).convert('RGB') else: response = requests.get(image_url, verify=False) image = Image.open(BytesIO(response.content)).convert('RGB') image_list.append(image) if role == 'user': if i == len(messages) - 1: # 最后一条用户消息 last_user_query = text_content else: formatted_history.append((text_content, '')) elif role == 'assistant': if formatted_history: if formatted_history[-1][1] != '': assert False, f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}" formatted_history[-1] = (formatted_history[-1][0], text_content) else: assert False, f"assistant reply before user" else: assert False, f"unrecognized role: {role}" return last_user_query, formatted_history, image_list @torch.inference_mode() def generate_stream_glm4v(model: AutoModel, tokenizer: AutoTokenizer, params: dict): uploaded = False messages = params["messages"] temperature = float(params.get("temperature", 1.0)) repetition_penalty = float(params.get("repetition_penalty", 1.0)) top_p = float(params.get("top_p", 1.0)) max_new_tokens = int(params.get("max_tokens", 256)) query, history, image_list = process_history_and_images(messages) inputs = [] for idx, (user_msg, model_msg) in enumerate(history): if idx == len(history) - 1 and not model_msg: inputs.append({"role": "user", "content": user_msg}) if image_list and not uploaded: inputs[-1].update({"image": image_list[0]}) uploaded = True break if user_msg: inputs.append({"role": "user", "content": user_msg}) if model_msg: inputs.append({"role": "assistant", "content": model_msg}) if len(image_list) >= 1: inputs.append({"role": "user", "content": query, "image": image_list[0]}) else: inputs.append({"role": "user", "content": query}) model_inputs = tokenizer.apply_chat_template( inputs, add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True ).to(next(model.parameters()).device) input_echo_len = len(model_inputs["input_ids"][0]) streamer = TextIteratorStreamer( tokenizer=tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True ) gen_kwargs = { "repetition_penalty": repetition_penalty, "max_new_tokens": max_new_tokens, "do_sample": True if temperature > 1e-5 else False, "top_p": top_p if temperature > 1e-5 else 0, "top_k": 1, 'streamer': streamer, "eos_token_id": [151329, 151336, 151338], } if temperature > 1e-5: gen_kwargs["temperature"] = temperature generated_text = "" def generate_text(): with torch.no_grad(): model.generate(**model_inputs, **gen_kwargs) generation_thread = threading.Thread(target=generate_text) generation_thread.start() total_len = input_echo_len for next_text in streamer: generated_text += next_text total_len = len(tokenizer.encode(generated_text)) yield { "text": generated_text, "usage": { "prompt_tokens": input_echo_len, "completion_tokens": total_len - input_echo_len, "total_tokens": total_len, }, } generation_thread.join() print('\033[91m--generated_text\033[0m', generated_text) yield { "text": generated_text, "usage": { "prompt_tokens": input_echo_len, "completion_tokens": total_len - input_echo_len, "total_tokens": total_len, }, } gc.collect() torch.cuda.empty_cache() if __name__ == "__main__": MODEL_PATH = sys.argv[1] model_dir = Path(MODEL_PATH).expanduser().resolve() if (model_dir / 'adapter_config.json').exists(): import json with open(model_dir / 'adapter_config.json', 'r', encoding='utf-8') as file: config = json.load(file) model = AutoModel.from_pretrained( config.get('base_model_name_or_path'), trust_remote_code=True, device_map='auto', torch_dtype=TORCH_TYPE ) model = PeftModelForCausalLM.from_pretrained( model=model, model_id=model_dir, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained( config.get('base_model_name_or_path'), trust_remote_code=True, encode_special_tokens=True ) model.eval() else: tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, trust_remote_code=True, encode_special_tokens=True ) model = AutoModel.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, device_map="auto", ).eval() uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)