# 使用 Intel® Extension for Transformers 推理 GLM-4-9B-Chat 模型 本示例介绍如何使用 Intel® Extension for Transformers 推理 GLM-4-9B-Chat 模型。 ## 设备和依赖检查 ### 相关推理测试数据 **本文档的数据均在以下硬件环境测试,实际运行环境需求和运行占用的显存略有不同,请以实际运行环境为准。** 测试硬件信息: + OS: Ubuntu 22.04 (本教程一定需要在Linux环境下执行) + Memory: 512GB + Python: 3.10.12 + CPU: Intel(R) Xeon(R) Platinum 8358 CPU / 12th Gen Intel i5-12400 ## 安装依赖 在开始推理之前,请你先安装`basic_demo`中的依赖,同时您需要安装本目录下的依赖项: ```shell pip install -r requirements.txt ``` ## 运行模型推理 ```shell python itrex_cli_demo.py ``` 如果您是第一次推理,会有一次模型转换权重的过程,转换后的模型权重存放在`runtime_outputs`文件夹下,这大概会消耗`60G`的硬盘空间。 转换完成后,文件夹下有两个文件: + ne_chatglm2_f32.bin 52G(如果您不使用FP32进行推理,可以删掉这个文件) + ne_chatglm2_q_nf4_bestla_cfp32_sym_sfp32_g32.bin 8.1G 如果您不是第一次推理,则会跳过这个步骤,直接开始对话,推理效果如下: ```shell Welcome to the CLI chat. Type your messages below. User: 你好 AVX:1 AVX2:1 AVX512F:1 AVX512BW:1 AVX_VNNI:0 AVX512_VNNI:1 AMX_INT8:0 AMX_BF16:0 AVX512_BF16:0 AVX512_FP16:0 beam_size: 1, do_sample: 1, top_k: 40, top_p: 0.900, continuous_batching: 0, max_request_num: 1, early_stopping: 0, scratch_size_ratio: 1.000 model_file_loader: loading model from runtime_outs/ne_chatglm2_q_nf4_bestla_cfp32_sym_sfp32_g32.bin Loading the bin file with NE format... load_ne_hparams 0.hparams.n_vocab = 151552 load_ne_hparams 1.hparams.n_embd = 4096 load_ne_hparams 2.hparams.n_mult = 0 load_ne_hparams 3.hparams.n_head = 32 load_ne_hparams 4.hparams.n_head_kv = 0 load_ne_hparams 5.hparams.n_layer = 40 load_ne_hparams 6.hparams.n_rot = 0 load_ne_hparams 7.hparams.ftype = 0 load_ne_hparams 8.hparams.max_seq_len = 131072 load_ne_hparams 9.hparams.alibi_bias_max = 0.000 load_ne_hparams 10.hparams.clip_qkv = 0.000 load_ne_hparams 11.hparams.par_res = 0 load_ne_hparams 12.hparams.word_embed_proj_dim = 0 load_ne_hparams 13.hparams.do_layer_norm_before = 0 load_ne_hparams 14.hparams.multi_query_group_num = 2 load_ne_hparams 15.hparams.ffn_hidden_size = 13696 load_ne_hparams 16.hparams.inner_hidden_size = 0 load_ne_hparams 17.hparams.n_experts = 0 load_ne_hparams 18.hparams.n_experts_used = 0 load_ne_hparams 19.hparams.n_embd_head_k = 0 load_ne_hparams 20.hparams.norm_eps = 0.000000 load_ne_hparams 21.hparams.freq_base = 5000000.000 load_ne_hparams 22.hparams.freq_scale = 1.000 load_ne_hparams 23.hparams.rope_scaling_factor = 0.000 load_ne_hparams 24.hparams.original_max_position_embeddings = 0 load_ne_hparams 25.hparams.use_yarn = 0 load_ne_vocab 26.vocab.bos_token_id = 1 load_ne_vocab 27.vocab.eos_token_id = 151329 load_ne_vocab 28.vocab.pad_token_id = 151329 load_ne_vocab 29.vocab.sep_token_id = -1 init: hparams.n_vocab = 151552 init: hparams.n_embd = 4096 init: hparams.n_mult = 0 init: hparams.n_head = 32 init: hparams.n_layer = 40 init: hparams.n_rot = 0 init: hparams.ffn_hidden_size = 13696 init: n_parts = 1 load: ctx size = 16528.38 MB load: layers[0].ffn_fusion = 1 load: scratch0 = 4096.00 MB load: scratch1 = 2048.00 MB load: scratch2 = 4096.00 MB load: mem required = 26768.38 MB (+ memory per state) ............................................................................................. model_init_from_file: support_bestla_kv = 1 kv_cache_init: run_mha_reordered = 1 model_init_from_file: kv self size = 690.00 MB Assistant: 你好👋!我是人工智能助手,很高兴为你服务。有什么可以帮助你的吗? ```