143 lines
4.6 KiB
Python
143 lines
4.6 KiB
Python
from pathlib import Path
|
|
from typing import Annotated, Union
|
|
import typer
|
|
from peft import PeftModelForCausalLM
|
|
from transformers import (
|
|
AutoModel,
|
|
AutoTokenizer,
|
|
)
|
|
import torch
|
|
|
|
app = typer.Typer(pretty_exceptions_show_locals=False)
|
|
|
|
|
|
def load_model_and_tokenizer(
|
|
model_dir: Union[str, Path], trust_remote_code: bool = True
|
|
):
|
|
model_dir = Path(model_dir).expanduser().resolve()
|
|
if (model_dir / "adapter_config.json").exists():
|
|
import json
|
|
|
|
with open(model_dir / "adapter_config.json", "r", encoding="utf-8") as file:
|
|
config = json.load(file)
|
|
model = AutoModel.from_pretrained(
|
|
config.get("base_model_name_or_path"),
|
|
trust_remote_code=trust_remote_code,
|
|
device_map="auto",
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
model = PeftModelForCausalLM.from_pretrained(
|
|
model=model,
|
|
model_id=model_dir,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
tokenizer_dir = model.peft_config["default"].base_model_name_or_path
|
|
else:
|
|
model = AutoModel.from_pretrained(
|
|
model_dir,
|
|
trust_remote_code=trust_remote_code,
|
|
device_map="auto",
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
tokenizer_dir = model_dir
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_dir,
|
|
trust_remote_code=trust_remote_code,
|
|
encode_special_tokens=True,
|
|
use_fast=False,
|
|
)
|
|
return model, tokenizer
|
|
|
|
|
|
@app.command()
|
|
def main(
|
|
model_dir: Annotated[str, typer.Argument(help="")],
|
|
):
|
|
# For GLM-4 Finetune Without Tools
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "#裙子#夏天",
|
|
}
|
|
]
|
|
|
|
# For GLM-4 Finetune With Tools
|
|
# messages = [
|
|
# {
|
|
# "role": "system", "content": "",
|
|
# "tools":
|
|
# [
|
|
# {
|
|
# "type": "function",
|
|
# "function": {
|
|
# "name": "create_calendar_event",
|
|
# "description": "Create a new calendar event",
|
|
# "parameters": {
|
|
# "type": "object",
|
|
# "properties": {
|
|
# "title": {
|
|
# "type": "string",
|
|
# "description": "The title of the event"
|
|
# },
|
|
# "start_time": {
|
|
# "type": "string",
|
|
# "description": "The start time of the event in the format YYYY-MM-DD HH:MM"
|
|
# },
|
|
# "end_time": {
|
|
# "type": "string",
|
|
# "description": "The end time of the event in the format YYYY-MM-DD HH:MM"
|
|
# }
|
|
# },
|
|
# "required": [
|
|
# "title",
|
|
# "start_time",
|
|
# "end_time"
|
|
# ]
|
|
# }
|
|
# }
|
|
# }
|
|
# ]
|
|
#
|
|
# },
|
|
# {
|
|
# "role": "user",
|
|
# "content": "Can you help me create a calendar event for my meeting tomorrow? The title is \"Team Meeting\". It starts at 10:00 AM and ends at 11:00 AM."
|
|
# },
|
|
# ]
|
|
|
|
# For GLM-4V Finetune
|
|
# messages = [
|
|
# {
|
|
# "role": "user",
|
|
# "content": "女孩可能希望观众做什么?",
|
|
# "image": Image.open("your Image").convert("RGB")
|
|
# }
|
|
# ]
|
|
|
|
model, tokenizer = load_model_and_tokenizer(model_dir)
|
|
inputs = tokenizer.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_tensors="pt",
|
|
return_dict=True,
|
|
).to(model.device)
|
|
generate_kwargs = {
|
|
"max_new_tokens": 1024,
|
|
"do_sample": True,
|
|
"top_p": 0.8,
|
|
"temperature": 0.8,
|
|
"repetition_penalty": 1.2,
|
|
"eos_token_id": model.config.eos_token_id,
|
|
}
|
|
outputs = model.generate(**inputs, **generate_kwargs)
|
|
response = tokenizer.decode(
|
|
outputs[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
|
).strip()
|
|
print("=========")
|
|
print(response)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app()
|