678 lines
23 KiB
Python
678 lines
23 KiB
Python
import time
|
||
from asyncio.log import logger
|
||
import re
|
||
import sys
|
||
import uvicorn
|
||
import gc
|
||
import json
|
||
import torch
|
||
import random
|
||
import string
|
||
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
|
||
from fastapi import FastAPI, HTTPException, Response
|
||
from fastapi.middleware.cors import CORSMiddleware
|
||
from contextlib import asynccontextmanager
|
||
from typing import List, Literal, Optional, Union
|
||
from pydantic import BaseModel, Field
|
||
from transformers import AutoTokenizer, LogitsProcessor
|
||
from sse_starlette.sse import EventSourceResponse
|
||
|
||
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
|
||
|
||
MAX_MODEL_LENGTH = 8192
|
||
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI):
|
||
yield
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.ipc_collect()
|
||
|
||
|
||
app = FastAPI(lifespan=lifespan)
|
||
|
||
app.add_middleware(
|
||
CORSMiddleware,
|
||
allow_origins=["*"],
|
||
allow_credentials=True,
|
||
allow_methods=["*"],
|
||
allow_headers=["*"],
|
||
)
|
||
|
||
|
||
def generate_id(prefix: str, k=29) -> str:
|
||
suffix = ''.join(random.choices(string.ascii_letters + string.digits, k=k))
|
||
return f"{prefix}{suffix}"
|
||
|
||
|
||
class ModelCard(BaseModel):
|
||
id: str = ""
|
||
object: str = "model"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
owned_by: str = "owner"
|
||
root: Optional[str] = None
|
||
parent: Optional[str] = None
|
||
permission: Optional[list] = None
|
||
|
||
|
||
class ModelList(BaseModel):
|
||
object: str = "list"
|
||
data: List[ModelCard] = ["glm-4"]
|
||
|
||
|
||
class FunctionCall(BaseModel):
|
||
name: Optional[str] = None
|
||
arguments: Optional[str] = None
|
||
|
||
|
||
class ChoiceDeltaToolCallFunction(BaseModel):
|
||
name: Optional[str] = None
|
||
arguments: Optional[str] = None
|
||
|
||
|
||
class UsageInfo(BaseModel):
|
||
prompt_tokens: int = 0
|
||
total_tokens: int = 0
|
||
completion_tokens: Optional[int] = 0
|
||
|
||
|
||
class ChatCompletionMessageToolCall(BaseModel):
|
||
index: Optional[int] = 0
|
||
id: Optional[str] = None
|
||
function: FunctionCall
|
||
type: Optional[Literal["function"]] = 'function'
|
||
|
||
|
||
class ChatMessage(BaseModel):
|
||
# “function” 字段解释:
|
||
# 使用较老的OpenAI API版本需要注意在这里添加 function 字段并在 process_messages函数中添加相应角色转换逻辑为 observation
|
||
|
||
role: Literal["user", "assistant", "system", "tool"]
|
||
content: Optional[str] = None
|
||
function_call: Optional[ChoiceDeltaToolCallFunction] = None
|
||
tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
|
||
|
||
|
||
class DeltaMessage(BaseModel):
|
||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||
content: Optional[str] = None
|
||
function_call: Optional[ChoiceDeltaToolCallFunction] = None
|
||
tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
|
||
|
||
|
||
class ChatCompletionResponseChoice(BaseModel):
|
||
index: int
|
||
message: ChatMessage
|
||
finish_reason: Literal["stop", "length", "tool_calls"]
|
||
|
||
|
||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||
delta: DeltaMessage
|
||
finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
|
||
index: int
|
||
|
||
|
||
class ChatCompletionResponse(BaseModel):
|
||
model: str
|
||
id: Optional[str] = Field(default_factory=lambda: generate_id('chatcmpl-', 29))
|
||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||
system_fingerprint: Optional[str] = Field(default_factory=lambda: generate_id('fp_', 9))
|
||
usage: Optional[UsageInfo] = None
|
||
|
||
|
||
class ChatCompletionRequest(BaseModel):
|
||
model: str
|
||
messages: List[ChatMessage]
|
||
temperature: Optional[float] = 0.8
|
||
top_p: Optional[float] = 0.8
|
||
max_tokens: Optional[int] = None
|
||
stream: Optional[bool] = False
|
||
tools: Optional[Union[dict, List[dict]]] = None
|
||
tool_choice: Optional[Union[str, dict]] = None
|
||
repetition_penalty: Optional[float] = 1.1
|
||
|
||
|
||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||
def __call__(
|
||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
||
) -> torch.FloatTensor:
|
||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||
scores.zero_()
|
||
scores[..., 5] = 5e4
|
||
return scores
|
||
|
||
|
||
def process_response(output: str, tools: dict | List[dict] = None, use_tool: bool = False) -> Union[str, dict]:
|
||
lines = output.strip().split("\n")
|
||
arguments_json = None
|
||
special_tools = ["cogview", "simple_browser"]
|
||
tools = {tool['function']['name'] for tool in tools} if tools else {}
|
||
|
||
# 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
|
||
##TODO 如果你希望做更多判断,可以在这里进行逻辑完善。
|
||
|
||
if len(lines) >= 2 and lines[1].startswith("{"):
|
||
function_name = lines[0].strip()
|
||
arguments = "\n".join(lines[1:]).strip()
|
||
if function_name in tools or function_name in special_tools:
|
||
try:
|
||
arguments_json = json.loads(arguments)
|
||
is_tool_call = True
|
||
except json.JSONDecodeError:
|
||
is_tool_call = function_name in special_tools
|
||
|
||
if is_tool_call and use_tool:
|
||
content = {
|
||
"name": function_name,
|
||
"arguments": json.dumps(arguments_json if isinstance(arguments_json, dict) else arguments,
|
||
ensure_ascii=False)
|
||
}
|
||
if function_name == "simple_browser":
|
||
search_pattern = re.compile(r'search\("(.+?)"\s*,\s*recency_days\s*=\s*(\d+)\)')
|
||
match = search_pattern.match(arguments)
|
||
if match:
|
||
content["arguments"] = json.dumps({
|
||
"query": match.group(1),
|
||
"recency_days": int(match.group(2))
|
||
}, ensure_ascii=False)
|
||
elif function_name == "cogview":
|
||
content["arguments"] = json.dumps({
|
||
"prompt": arguments
|
||
}, ensure_ascii=False)
|
||
|
||
return content
|
||
return output.strip()
|
||
|
||
|
||
@torch.inference_mode()
|
||
async def generate_stream_glm4(params):
|
||
messages = params["messages"]
|
||
tools = params["tools"]
|
||
tool_choice = params["tool_choice"]
|
||
temperature = float(params.get("temperature", 1.0))
|
||
repetition_penalty = float(params.get("repetition_penalty", 1.0))
|
||
top_p = float(params.get("top_p", 1.0))
|
||
max_new_tokens = int(params.get("max_tokens", 8192))
|
||
|
||
messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
|
||
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||
params_dict = {
|
||
"n": 1,
|
||
"best_of": 1,
|
||
"presence_penalty": 1.0,
|
||
"frequency_penalty": 0.0,
|
||
"temperature": temperature,
|
||
"top_p": top_p,
|
||
"top_k": -1,
|
||
"repetition_penalty": repetition_penalty,
|
||
"stop_token_ids": [151329, 151336, 151338],
|
||
"ignore_eos": False,
|
||
"max_tokens": max_new_tokens,
|
||
"logprobs": None,
|
||
"prompt_logprobs": None,
|
||
"skip_special_tokens": True,
|
||
}
|
||
sampling_params = SamplingParams(**params_dict)
|
||
async for output in engine.generate(prompt=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
|
||
output_len = len(output.outputs[0].token_ids)
|
||
input_len = len(output.prompt_token_ids)
|
||
ret = {
|
||
"text": output.outputs[0].text,
|
||
"usage": {
|
||
"prompt_tokens": input_len,
|
||
"completion_tokens": output_len,
|
||
"total_tokens": output_len + input_len
|
||
},
|
||
"finish_reason": output.outputs[0].finish_reason,
|
||
}
|
||
yield ret
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
|
||
|
||
def process_messages(messages, tools=None, tool_choice="none"):
|
||
_messages = messages
|
||
processed_messages = []
|
||
msg_has_sys = False
|
||
|
||
def filter_tools(tool_choice, tools):
|
||
function_name = tool_choice.get('function', {}).get('name', None)
|
||
if not function_name:
|
||
return []
|
||
filtered_tools = [
|
||
tool for tool in tools
|
||
if tool.get('function', {}).get('name') == function_name
|
||
]
|
||
return filtered_tools
|
||
|
||
if tool_choice != "none":
|
||
if isinstance(tool_choice, dict):
|
||
tools = filter_tools(tool_choice, tools)
|
||
if tools:
|
||
processed_messages.append(
|
||
{
|
||
"role": "system",
|
||
"content": None,
|
||
"tools": tools
|
||
}
|
||
)
|
||
msg_has_sys = True
|
||
|
||
if isinstance(tool_choice, dict) and tools:
|
||
processed_messages.append(
|
||
{
|
||
"role": "assistant",
|
||
"metadata": tool_choice["function"]["name"],
|
||
"content": ""
|
||
}
|
||
)
|
||
|
||
for m in _messages:
|
||
role, content, func_call = m.role, m.content, m.function_call
|
||
tool_calls = getattr(m, 'tool_calls', None)
|
||
|
||
if role == "function":
|
||
processed_messages.append(
|
||
{
|
||
"role": "observation",
|
||
"content": content
|
||
}
|
||
)
|
||
elif role == "tool":
|
||
processed_messages.append(
|
||
{
|
||
"role": "observation",
|
||
"content": content,
|
||
"function_call": True
|
||
}
|
||
)
|
||
elif role == "assistant":
|
||
if tool_calls:
|
||
for tool_call in tool_calls:
|
||
processed_messages.append(
|
||
{
|
||
"role": "assistant",
|
||
"metadata": tool_call.function.name,
|
||
"content": tool_call.function.arguments
|
||
}
|
||
)
|
||
else:
|
||
for response in content.split("\n"):
|
||
if "\n" in response:
|
||
metadata, sub_content = response.split("\n", maxsplit=1)
|
||
else:
|
||
metadata, sub_content = "", response
|
||
processed_messages.append(
|
||
{
|
||
"role": role,
|
||
"metadata": metadata,
|
||
"content": sub_content.strip()
|
||
}
|
||
)
|
||
else:
|
||
if role == "system" and msg_has_sys:
|
||
msg_has_sys = False
|
||
continue
|
||
processed_messages.append({"role": role, "content": content})
|
||
|
||
if not tools or tool_choice == "none":
|
||
for m in _messages:
|
||
if m.role == 'system':
|
||
processed_messages.insert(0, {"role": m.role, "content": m.content})
|
||
break
|
||
return processed_messages
|
||
|
||
|
||
@app.get("/health")
|
||
async def health() -> Response:
|
||
"""Health check."""
|
||
return Response(status_code=200)
|
||
|
||
|
||
@app.get("/v1/models", response_model=ModelList)
|
||
async def list_models():
|
||
model_card = ModelCard(id="glm-4")
|
||
return ModelList(data=[model_card])
|
||
|
||
|
||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||
async def create_chat_completion(request: ChatCompletionRequest):
|
||
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
|
||
raise HTTPException(status_code=400, detail="Invalid request")
|
||
|
||
gen_params = dict(
|
||
messages=request.messages,
|
||
temperature=request.temperature,
|
||
top_p=request.top_p,
|
||
max_tokens=request.max_tokens or 1024,
|
||
echo=False,
|
||
stream=request.stream,
|
||
repetition_penalty=request.repetition_penalty,
|
||
tools=request.tools,
|
||
tool_choice=request.tool_choice,
|
||
)
|
||
logger.debug(f"==== request ====\n{gen_params}")
|
||
|
||
if request.stream:
|
||
predict_stream_generator = predict_stream(request.model, gen_params)
|
||
output = await anext(predict_stream_generator)
|
||
if output:
|
||
return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
|
||
logger.debug(f"First result output:\n{output}")
|
||
|
||
function_call = None
|
||
if output and request.tools:
|
||
try:
|
||
function_call = process_response(output, request.tools, use_tool=True)
|
||
except:
|
||
logger.warning("Failed to parse tool call")
|
||
|
||
if isinstance(function_call, dict):
|
||
function_call = ChoiceDeltaToolCallFunction(**function_call)
|
||
generate = parse_output_text(request.model, output, function_call=function_call)
|
||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||
else:
|
||
return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
|
||
response = ""
|
||
async for response in generate_stream_glm4(gen_params):
|
||
pass
|
||
|
||
if response["text"].startswith("\n"):
|
||
response["text"] = response["text"][1:]
|
||
response["text"] = response["text"].strip()
|
||
|
||
usage = UsageInfo()
|
||
|
||
function_call, finish_reason = None, "stop"
|
||
tool_calls = None
|
||
if request.tools:
|
||
try:
|
||
function_call = process_response(response["text"], request.tools, use_tool=True)
|
||
except Exception as e:
|
||
logger.warning(f"Failed to parse tool call: {e}")
|
||
if isinstance(function_call, dict):
|
||
finish_reason = "tool_calls"
|
||
function_call_response = ChoiceDeltaToolCallFunction(**function_call)
|
||
function_call_instance = FunctionCall(
|
||
name=function_call_response.name,
|
||
arguments=function_call_response.arguments
|
||
)
|
||
tool_calls = [
|
||
ChatCompletionMessageToolCall(
|
||
id=generate_id('call_', 24),
|
||
function=function_call_instance,
|
||
type="function")]
|
||
|
||
message = ChatMessage(
|
||
role="assistant",
|
||
content=None if tool_calls else response["text"],
|
||
function_call=None,
|
||
tool_calls=tool_calls,
|
||
)
|
||
|
||
logger.debug(f"==== message ====\n{message}")
|
||
|
||
choice_data = ChatCompletionResponseChoice(
|
||
index=0,
|
||
message=message,
|
||
finish_reason=finish_reason,
|
||
)
|
||
task_usage = UsageInfo.model_validate(response["usage"])
|
||
for usage_key, usage_value in task_usage.model_dump().items():
|
||
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
|
||
|
||
return ChatCompletionResponse(
|
||
model=request.model,
|
||
choices=[choice_data],
|
||
object="chat.completion",
|
||
usage=usage
|
||
)
|
||
|
||
|
||
async def predict_stream(model_id, gen_params):
|
||
output = ""
|
||
is_function_call = False
|
||
has_send_first_chunk = False
|
||
created_time = int(time.time())
|
||
function_name = None
|
||
response_id = generate_id('chatcmpl-', 29)
|
||
system_fingerprint = generate_id('fp_', 9)
|
||
tools = {tool['function']['name'] for tool in gen_params['tools']} if gen_params['tools'] else {}
|
||
delta_text = ""
|
||
async for new_response in generate_stream_glm4(gen_params):
|
||
decoded_unicode = new_response["text"]
|
||
delta_text += decoded_unicode[len(output):]
|
||
output = decoded_unicode
|
||
lines = output.strip().split("\n")
|
||
|
||
# 检查是否为工具
|
||
# 这是一个简单的工具比较函数,不能保证拦截所有非工具输出的结果,比如参数未对齐等特殊情况。
|
||
##TODO 如果你希望做更多处理,可以在这里进行逻辑完善。
|
||
|
||
if not is_function_call and len(lines) >= 2:
|
||
first_line = lines[0].strip()
|
||
if first_line in tools:
|
||
is_function_call = True
|
||
function_name = first_line
|
||
delta_text = lines[1]
|
||
|
||
# 工具调用返回
|
||
if is_function_call:
|
||
if not has_send_first_chunk:
|
||
function_call = {"name": function_name, "arguments": ""}
|
||
tool_call = ChatCompletionMessageToolCall(
|
||
index=0,
|
||
id=generate_id('call_', 24),
|
||
function=FunctionCall(**function_call),
|
||
type="function"
|
||
)
|
||
message = DeltaMessage(
|
||
content=None,
|
||
role="assistant",
|
||
function_call=None,
|
||
tool_calls=[tool_call]
|
||
)
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield ""
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
has_send_first_chunk = True
|
||
|
||
function_call = {"name": None, "arguments": delta_text}
|
||
delta_text = ""
|
||
tool_call = ChatCompletionMessageToolCall(
|
||
index=0,
|
||
id=None,
|
||
function=FunctionCall(**function_call),
|
||
type="function"
|
||
)
|
||
message = DeltaMessage(
|
||
content=None,
|
||
role=None,
|
||
function_call=None,
|
||
tool_calls=[tool_call]
|
||
)
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
|
||
# 用户请求了 Function Call 但是框架还没确定是否为Function Call
|
||
elif (gen_params["tools"] and gen_params["tool_choice"] != "none") or is_function_call:
|
||
continue
|
||
|
||
# 常规返回
|
||
else:
|
||
finish_reason = new_response.get("finish_reason", None)
|
||
if not has_send_first_chunk:
|
||
message = DeltaMessage(
|
||
content="",
|
||
role="assistant",
|
||
function_call=None,
|
||
)
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=finish_reason
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
has_send_first_chunk = True
|
||
|
||
message = DeltaMessage(
|
||
content=delta_text,
|
||
role="assistant",
|
||
function_call=None,
|
||
)
|
||
delta_text = ""
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=finish_reason
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
|
||
# 工具调用需要额外返回一个字段以对齐 OpenAI 接口
|
||
if is_function_call:
|
||
yield ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
system_fingerprint=system_fingerprint,
|
||
choices=[
|
||
ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=DeltaMessage(
|
||
content=None,
|
||
role=None,
|
||
function_call=None,
|
||
),
|
||
finish_reason="tool_calls"
|
||
)],
|
||
created=created_time,
|
||
object="chat.completion.chunk",
|
||
usage=None
|
||
).model_dump_json(exclude_unset=True)
|
||
elif delta_text != "":
|
||
message = DeltaMessage(
|
||
content="",
|
||
role="assistant",
|
||
function_call=None,
|
||
)
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
|
||
finish_reason = 'stop'
|
||
message = DeltaMessage(
|
||
content=delta_text,
|
||
role="assistant",
|
||
function_call=None,
|
||
)
|
||
delta_text = ""
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=message,
|
||
finish_reason=finish_reason
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
id=response_id,
|
||
choices=[choice_data],
|
||
created=created_time,
|
||
system_fingerprint=system_fingerprint,
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield chunk.model_dump_json(exclude_unset=True)
|
||
yield '[DONE]'
|
||
else:
|
||
yield '[DONE]'
|
||
|
||
async def parse_output_text(model_id: str, value: str, function_call: ChoiceDeltaToolCallFunction = None):
|
||
delta = DeltaMessage(role="assistant", content=value)
|
||
if function_call is not None:
|
||
delta.function_call = function_call
|
||
|
||
choice_data = ChatCompletionResponseStreamChoice(
|
||
index=0,
|
||
delta=delta,
|
||
finish_reason=None
|
||
)
|
||
chunk = ChatCompletionResponse(
|
||
model=model_id,
|
||
choices=[choice_data],
|
||
object="chat.completion.chunk"
|
||
)
|
||
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
||
yield '[DONE]'
|
||
|
||
|
||
if __name__ == "__main__":
|
||
MODEL_PATH = sys.argv[1]
|
||
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
||
engine_args = AsyncEngineArgs(
|
||
model=MODEL_PATH,
|
||
tokenizer=MODEL_PATH,
|
||
# 如果你有多张显卡,可以在这里设置成你的显卡数量
|
||
tensor_parallel_size=1,
|
||
# dtype="bfloat16",
|
||
dtype="half",
|
||
trust_remote_code=True,
|
||
# 占用显存的比例,请根据你的显卡显存大小设置合适的值,例如,如果你的显卡有80G,您只想使用24G,请按照24/80=0.3设置
|
||
gpu_memory_utilization=0.9,
|
||
enforce_eager=True,
|
||
worker_use_ray=False,
|
||
disable_log_requests=True,
|
||
max_model_len=MAX_MODEL_LENGTH,
|
||
)
|
||
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|