110 lines
3.8 KiB
Python
110 lines
3.8 KiB
Python
from pathlib import Path
|
|
from typing import Annotated, Union
|
|
|
|
import typer
|
|
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
PreTrainedModel,
|
|
PreTrainedTokenizer,
|
|
PreTrainedTokenizerFast
|
|
)
|
|
|
|
ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
|
|
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
|
|
|
app = typer.Typer(pretty_exceptions_show_locals=False)
|
|
|
|
|
|
def load_model_and_tokenizer(
|
|
model_dir: Union[str, Path], trust_remote_code: bool = True
|
|
) -> tuple[ModelType, TokenizerType]:
|
|
model_dir = Path(model_dir).expanduser().resolve()
|
|
if (model_dir / 'adapter_config.json').exists():
|
|
model = AutoPeftModelForCausalLM.from_pretrained(
|
|
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
|
|
)
|
|
tokenizer_dir = model.peft_config['default'].base_model_name_or_path
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
|
|
)
|
|
tokenizer_dir = model_dir
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_dir, trust_remote_code=trust_remote_code, encode_special_tokens=True, use_fast=False
|
|
)
|
|
return model, tokenizer
|
|
|
|
|
|
@app.command()
|
|
def main(
|
|
model_dir: Annotated[str, typer.Argument(help='')],
|
|
):
|
|
messages = [
|
|
{
|
|
"role": "system", "content": "",
|
|
"tools":
|
|
[
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "create_calendar_event",
|
|
"description": "Create a new calendar event",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"title": {
|
|
"type": "string",
|
|
"description": "The title of the event"
|
|
},
|
|
"start_time": {
|
|
"type": "string",
|
|
"description": "The start time of the event in the format YYYY-MM-DD HH:MM"
|
|
},
|
|
"end_time": {
|
|
"type": "string",
|
|
"description": "The end time of the event in the format YYYY-MM-DD HH:MM"
|
|
}
|
|
},
|
|
"required": [
|
|
"title",
|
|
"start_time",
|
|
"end_time"
|
|
]
|
|
}
|
|
}
|
|
}
|
|
]
|
|
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Can you help me create a calendar event for my meeting tomorrow? The title is \"Team Meeting\". It starts at 10:00 AM and ends at 11:00 AM."
|
|
},
|
|
]
|
|
model, tokenizer = load_model_and_tokenizer(model_dir)
|
|
inputs = tokenizer.apply_chat_template(
|
|
messages,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_tensors="pt"
|
|
).to(model.device)
|
|
generate_kwargs = {
|
|
"input_ids": inputs,
|
|
"max_new_tokens": 1024,
|
|
"do_sample": True,
|
|
"top_p": 0.8,
|
|
"temperature": 0.8,
|
|
"repetition_penalty": 1.2,
|
|
"eos_token_id": model.config.eos_token_id,
|
|
}
|
|
outputs = model.generate(**generate_kwargs)
|
|
response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True).strip()
|
|
print("=========")
|
|
print(response)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app()
|