forked from ailab/dinov2-base
first commit
This commit is contained in:
commit
a4634c0148
|
@ -0,0 +1,35 @@
|
|||
*.7z filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.bin filter=lfs diff=lfs merge=lfs -text
|
||||
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
||||
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
||||
*.ftz filter=lfs diff=lfs merge=lfs -text
|
||||
*.gz filter=lfs diff=lfs merge=lfs -text
|
||||
*.h5 filter=lfs diff=lfs merge=lfs -text
|
||||
*.joblib filter=lfs diff=lfs merge=lfs -text
|
||||
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
||||
*.model filter=lfs diff=lfs merge=lfs -text
|
||||
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
||||
*.npy filter=lfs diff=lfs merge=lfs -text
|
||||
*.npz filter=lfs diff=lfs merge=lfs -text
|
||||
*.onnx filter=lfs diff=lfs merge=lfs -text
|
||||
*.ot filter=lfs diff=lfs merge=lfs -text
|
||||
*.parquet filter=lfs diff=lfs merge=lfs -text
|
||||
*.pb filter=lfs diff=lfs merge=lfs -text
|
||||
*.pickle filter=lfs diff=lfs merge=lfs -text
|
||||
*.pkl filter=lfs diff=lfs merge=lfs -text
|
||||
*.pt filter=lfs diff=lfs merge=lfs -text
|
||||
*.pth filter=lfs diff=lfs merge=lfs -text
|
||||
*.rar filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
||||
*.tar filter=lfs diff=lfs merge=lfs -text
|
||||
*.tflite filter=lfs diff=lfs merge=lfs -text
|
||||
*.tgz filter=lfs diff=lfs merge=lfs -text
|
||||
*.wasm filter=lfs diff=lfs merge=lfs -text
|
||||
*.xz filter=lfs diff=lfs merge=lfs -text
|
||||
*.zip filter=lfs diff=lfs merge=lfs -text
|
||||
*.zst filter=lfs diff=lfs merge=lfs -text
|
||||
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,61 @@
|
|||
---
|
||||
license: apache-2.0
|
||||
tags:
|
||||
- dino
|
||||
- vision
|
||||
inference: false
|
||||
---
|
||||
|
||||
# Vision Transformer (base-sized model) trained using DINOv2
|
||||
|
||||
Vision Transformer (ViT) model trained using the DINOv2 method. It was introduced in the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Oquab et al. and first released in [this repository](https://github.com/facebookresearch/dinov2).
|
||||
|
||||
Disclaimer: The team releasing DINOv2 did not write a model card for this model so this model card has been written by the Hugging Face team.
|
||||
|
||||
## Model description
|
||||
|
||||
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion.
|
||||
|
||||
Images are presented to the model as a sequence of fixed-size patches, which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
|
||||
|
||||
Note that this model does not include any fine-tuned heads.
|
||||
|
||||
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
|
||||
|
||||
## Intended uses & limitations
|
||||
|
||||
You can use the raw model for feature extraction. See the [model hub](https://huggingface.co/models?search=facebook/dinov2) to look for
|
||||
fine-tuned versions on a task that interests you.
|
||||
|
||||
### How to use
|
||||
|
||||
Here is how to use this model:
|
||||
|
||||
```python
|
||||
from transformers import AutoImageProcessor, AutoModel
|
||||
from PIL import Image
|
||||
import requests
|
||||
|
||||
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
||||
model = AutoModel.from_pretrained('facebook/dinov2-base')
|
||||
|
||||
inputs = processor(images=image, return_tensors="pt")
|
||||
outputs = model(**inputs)
|
||||
last_hidden_states = outputs.last_hidden_state
|
||||
```
|
||||
|
||||
### BibTeX entry and citation info
|
||||
|
||||
```bibtex
|
||||
misc{oquab2023dinov2,
|
||||
title={DINOv2: Learning Robust Visual Features without Supervision},
|
||||
author={Maxime Oquab and Timothée Darcet and Théo Moutakanni and Huy Vo and Marc Szafraniec and Vasil Khalidov and Pierre Fernandez and Daniel Haziza and Francisco Massa and Alaaeldin El-Nouby and Mahmoud Assran and Nicolas Ballas and Wojciech Galuba and Russell Howes and Po-Yao Huang and Shang-Wen Li and Ishan Misra and Michael Rabbat and Vasu Sharma and Gabriel Synnaeve and Hu Xu and Hervé Jegou and Julien Mairal and Patrick Labatut and Armand Joulin and Piotr Bojanowski},
|
||||
year={2023},
|
||||
eprint={2304.07193},
|
||||
archivePrefix={arXiv},
|
||||
primaryClass={cs.CV}
|
||||
}
|
||||
```
|
|
@ -0,0 +1,24 @@
|
|||
{
|
||||
"architectures": [
|
||||
"Dinov2Model"
|
||||
],
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"drop_path_rate": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_size": 768,
|
||||
"image_size": 518,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_eps": 1e-06,
|
||||
"layerscale_value": 1.0,
|
||||
"mlp_ratio": 4,
|
||||
"model_type": "dinov2",
|
||||
"num_attention_heads": 12,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 12,
|
||||
"patch_size": 14,
|
||||
"qkv_bias": true,
|
||||
"torch_dtype": "float32",
|
||||
"transformers_version": "4.31.0.dev0",
|
||||
"use_swiglu_ffn": false
|
||||
}
|
Binary file not shown.
|
@ -0,0 +1,27 @@
|
|||
{
|
||||
"crop_size": {
|
||||
"height": 224,
|
||||
"width": 224
|
||||
},
|
||||
"do_center_crop": true,
|
||||
"do_convert_rgb": true,
|
||||
"do_normalize": true,
|
||||
"do_rescale": true,
|
||||
"do_resize": true,
|
||||
"image_mean": [
|
||||
0.485,
|
||||
0.456,
|
||||
0.406
|
||||
],
|
||||
"image_processor_type": "BitImageProcessor",
|
||||
"image_std": [
|
||||
0.229,
|
||||
0.224,
|
||||
0.225
|
||||
],
|
||||
"resample": 3,
|
||||
"rescale_factor": 0.00392156862745098,
|
||||
"size": {
|
||||
"shortest_edge": 256
|
||||
}
|
||||
}
|
Binary file not shown.
Loading…
Reference in New Issue