first commit

This commit is contained in:
xxl 2024-11-21 15:49:20 +08:00
parent a59cc03f08
commit f2c2596063
21 changed files with 301847 additions and 2 deletions

Binary file not shown.

0
LICENSE Normal file
View File

View File

@ -1,4 +1,70 @@
# AquilaChat2-7B_a13670421562519552438590
---
license: other
---
AquilaChat2-7B
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<b>English</b> |
<a href="https://huggingface.co/BAAI/AquilaChat2-7B/blob/main/README_zh.md">简体中文</a>
</p>
</h4>
We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B** and **Aquila2-34B**, as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B** and **AquilaChat2-34B**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
## Quick Start AquilaChat2-7BChat model
### 1. Inference
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
device = torch.device("cuda:0")
model_info = "BAAI/AquilaChat2-7B"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True, torch_dtype=torch.float16,
# quantization_config=quantization_config, # Uncomment this line for 4bit quantization
)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
from predict import predict
out = predict(model, text, tokenizer=tokenizer, max_gen_len=200, top_p=0.95,
seed=1234, topk=100, temperature=0.9, sft=True, device=device,
model_name="AquilaChat2-7B")
print(out)
```
## License
Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaChat2-7B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)
## Citation
Feel free to cite the repo if you think Aquila2 is useful.
```python
@misc{zhang2024aquila2technicalreport,
title={Aquila2 Technical Report},
author={Bo-Wen Zhang and Liangdong Wang and Jijie Li and Shuhao Gu and Xinya Wu and Zhengduo Zhang and Boyan Gao and Yulong Ao and Guang Liu},
year={2024},
eprint={2408.07410},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.07410},
}
```

51
README_zh.md Normal file
View File

@ -0,0 +1,51 @@
---
license: other
---
![Aquila_logo](./log.jpeg)
<h4 align="center">
<p>
<a href="https://huggingface.co/BAAI/AquilaChat2-7B/blob/main/README.md">English</a>
<b>简体中文</b> |
</p>
</h4>
# 悟道·天鹰Aquila2
我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B****Aquila2-34B** ,对话模型 **AquilaChat2-7B****AquilaChat2-34B**,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k**
悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。
## 快速开始使用 AquilaChat2-7B
## 使用方式/How to use
### 1. 推理/Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda")
model_info = "BAAI/AquilaChat2-7B"
tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
model.eval()
model.to(device)
text = "请给出10个要到北京旅游的理由。"
tokens = tokenizer.encode_plus(text)['input_ids']
tokens = torch.tensor(tokens)[None,].to(device)
stop_tokens = ["###", "[UNK]", "</s>"]
with torch.no_grad():
out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
out = tokenizer.decode(out.cpu().numpy().tolist())
print(out)
```
## 证书/License
Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/Aquila2-70B/blob/main/BAAI-Aquila-Model-License-Agreement.pdf)

10
added_tokens.json Normal file
View File

@ -0,0 +1,10 @@
{
"</s>": 100007,
"<|LDWANG|>": 100002,
"<|endofpiece|>": 100001,
"<|startofpiece|>": 100000,
"[CLS]": 100006,
"[MASK]": 100003,
"[gMASK]": 100004,
"[sMASK]": 100005
}

27
config.json Normal file
View File

@ -0,0 +1,27 @@
{
"architectures": [
"AquilaForCausalLM"
],
"auto_map": {
"AutoConfig": "configuration_aquila.AquilaConfig",
"AutoModelForCausalLM": "modeling_aquila.AquilaForCausalLM"
},
"bos_token_id": 100006,
"eos_token_id": 100007,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 11008,
"max_position_embeddings": 2048,
"model_type": "aquila",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"pad_token_id": 0,
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.31.0",
"use_cache": true,
"vocab_size": 100008
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}

128
configuration_aquila.py Normal file
View File

@ -0,0 +1,128 @@
# coding=utf-8
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Aquila model configuration"""
from transformers import PretrainedConfig
class AquilaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Aquila-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`AquilaModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
```python
>>> from transformers import AquilaModel, AquilaConfig
>>> # Initializing a Aquila aquila-7b style configuration
>>> configuration = AquilaConfig()
>>> # Initializing a model from the aquila-7b style configuration
>>> model = AquilaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "aquila"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=100008,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

7
generation_config.json Normal file
View File

@ -0,0 +1,7 @@
{
"_from_model_config": true,
"bos_token_id": 100006,
"eos_token_id": 100007,
"pad_token_id": 0,
"transformers_version": "4.31.0"
}

BIN
log.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 391 KiB

99744
merges.txt Normal file

File diff suppressed because it is too large Load Diff

1146
modeling_aquila.py Normal file

File diff suppressed because it is too large Load Diff

446
predict.py Normal file
View File

@ -0,0 +1,446 @@
"""
Copied from https://github.com/lm-sys/FastChat.
Later we will contribute our changes into it.
"""
import dataclasses
from enum import auto, IntEnum
from typing import List, Any, Dict
import math
from typing import List, Optional, Tuple, Union
import random
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers import (
LogitsProcessorList,
MinLengthLogitsProcessor,
TopKLogitsWarper,
TemperatureLogitsWarper,
TopPLogitsWarper,
StoppingCriteriaList,
MaxLengthCriteria,
BitsAndBytesConfig,
)
class SeparatorStyle(IntEnum):
"""Separator styles."""
ADD_COLON_SINGLE = auto()
ADD_COLON_TWO = auto()
ADD_COLON_SPACE_SINGLE = auto()
NO_COLON_SINGLE = auto()
NO_COLON_TWO = auto()
ADD_NEW_LINE_SINGLE = auto()
@dataclasses.dataclass
class Conversation:
"""A class that manages prompt templates and keeps all conversation history."""
# The name of this template
name: str
# The template of the system prompt
system_template: str = "{system_message}"
# The system message
system_message: str = ""
# The names of two roles
roles: List[str] = (("USER", "ASSISTANT"),)
# All messages. Each item is (role, message).
messages: List[List[str]] = ()
# The number of few shot examples
offset: int = 0
# The separator style and configurations
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
sep: str = "\n"
sep2: str = None
# Stop criteria (the default one is EOS token)
stop_str: str = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
def get_prompt(self) -> str:
"""Get the prompt for generation."""
system_prompt = self.system_template.format(system_message=self.system_message)
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ": " + message + self.sep
else:
ret += role + ": " # must be end with a space
return ret
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
ret = "" if system_prompt == "" else system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + "\n" + message + self.sep
else:
ret += role + "\n"
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
ret = system_prompt
for role, message in self.messages:
if message:
ret += role + message + self.sep
else:
ret += role
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + message + seps[i % 2]
else:
ret += role
return ret
def set_system_message(self, system_message: str):
"""Set the system message."""
self.system_message = system_message
def append_message(self, role: str, message: str):
"""Append a new message."""
self.messages.append([role, message])
def update_last_message(self, message: str):
"""Update the last output.
The last message is typically set to be None when constructing the prompt,
so we need to update it in-place after getting the response from a model.
"""
self.messages[-1][1] = message
def copy(self):
return Conversation(
name=self.name,
system_template=self.system_template,
system_message=self.system_message,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
stop_str=self.stop_str,
stop_token_ids=self.stop_token_ids,
)
def dict(self):
return {
"template_name": self.name,
"system_message": self.system_message,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
}
# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}
def register_conv_template(template: Conversation, override: bool = False):
"""Register a new conversation template."""
if not override:
assert (
template.name not in conv_templates
), f"{template.name} has been registered."
conv_templates[template.name] = template
def get_conv_template(name: str) -> Conversation:
"""Get a conversation template."""
return conv_templates[name].copy()
def get_conversation_template(model_path: str) -> Conversation:
"""Get the default conversation template."""
if "aquila-v1" in model_path:
return get_conv_template("aquila-v1")
elif "aquila-chat" in model_path:
return get_conv_template("aquila-chat")
elif "aquila-legacy" in model_path:
return get_conv_template("aquila-legacy")
else:
return get_conv_template("aquila")
# AquilaChat default template
# source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
register_conv_template(
Conversation(
name="aquila-chat",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_COLON_SINGLE,
sep="###",
sep2="",
stop_str=["###", "</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila-legacy",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
roles=("### Human: ", "### Assistant: ", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.NO_COLON_TWO,
sep="\n",
sep2="</s>",
stop_str=["</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila",
system_message="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
roles=("Human", "Assistant", "System"),
messages=(),
offset=0,
sep_style=SeparatorStyle.ADD_COLON_TWO,
sep="###",
sep2="</s>",
stop_str=["</s>", "[UNK]"],
)
)
register_conv_template(
Conversation(
name="aquila-v1",
roles=("<|startofpiece|>", "<|endofpiece|>", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.NO_COLON_TWO,
sep="",
sep2="</s>",
stop_str=["</s>", "<|endoftext|>"],
)
)
if __name__ == "__main__":
print("aquila template:")
conv = get_conv_template("aquila")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-chat template:")
conv = get_conv_template("aquila-chat")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-v1 template:")
conv = get_conv_template("aquila-v1")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
print("aquila-legacy template:")
conv = get_conv_template("aquila-legacy")
conv.append_message(conv.roles[0], "Hello!")
conv.append_message(conv.roles[1], "Hi!")
conv.append_message(conv.roles[0], "How are you?")
conv.append_message(conv.roles[1], None)
print(conv.get_prompt())
print("\n")
def set_random_seed(seed):
"""Set random seed for reproducability."""
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def covert_prompt_to_input_ids_with_history(text, history, tokenizer, max_token, convo_template="aquila-chat"):
# aquila-chat as default
conv = get_conv_template(convo_template)
conv.append_message(conv.roles[1], None)
conv.append_message(conv.roles[0], text)
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
if history is None or not isinstance(history, list):
history = []
while(len(history) > 0 and (len(example) < max_token)):
tmp = history.pop()
if tmp[0] == 'ASSISTANT':
conv.append_message(conv.roles[1], tmp[1])
else:
conv.append_message(conv.roles[0], tmp[1])
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
if len(example) >= max_token:
conv.messages.pop()
conv.messages = conv.messages[::-1]
print('model in:', conv.get_prompt())
example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
return example
def predict(model, text, tokenizer=None,
max_gen_len=200, top_p=0.95,
seed=1234, topk=100,
temperature=0.9,
sft=True, convo_template = "",
device = "cuda",
model_name="AquilaChat2-7B",
history=None,
**kwargs):
vocab = tokenizer.get_vocab()
id2word = {v:k for k, v in vocab.items()}
template_map = {"AquilaChat2-7B": "aquila-v1",
"AquilaChat2-34B": "aquila-legacy",
"AquilaChat2-7B-16K": "aquila",
"AquilaChat2-34B-16K": "aquila"}
if not convo_template:
convo_template=template_map.get(model_name, "aquila-chat")
set_random_seed(seed)
if temperature == 0:
topk = 1
temperature = 1.0
if sft:
tokens = covert_prompt_to_input_ids_with_history(text, history=history, tokenizer=tokenizer, max_token=2048, convo_template=convo_template)
tokens = torch.tensor(tokens)[None,].to(device)
else :
tokens = tokenizer.encode_plus(text)["input_ids"]
print(tokenizer.decode(tokens))
tokens = torch.tensor(tokens)[None,].to(device)
input_length = len(tokens[0])
with torch.no_grad():
# instantiate logits processors
logits_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(1, eos_token_id=100007),
]
)
# instantiate logits processors
logits_warper = LogitsProcessorList(
[
TopPLogitsWarper(top_p),
TopKLogitsWarper(topk),
TemperatureLogitsWarper(temperature),
]
)
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
out = model.sample(
tokens,
logits_processor=logits_processor,
logits_warper=logits_warper,
stopping_criteria=stopping_criteria,
return_dict_in_generate=True,
output_scores=True,
)
# print(out)
out_ids = out["sequences"][0][input_length:].cpu().numpy()
out_scores = out["scores"]
out_scores = torch.cat(out_scores, dim=0)
out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
probs = []
for i in range(len(out_ids)):
probs.append(float(out_scores[i][out_ids[i]]))
# print(f"probs is {probs}")
convert_tokens = []
for t in out_ids:
if t == 100006:
convert_tokens.append("[CLS]")
else :
convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
out_text = tokenizer.decode(out_ids.tolist())
out = out_text
if "[UNK]" in out:
special_index = out.index("[UNK]")
out = out[:special_index]
token_length = len(tokenizer.encode_plus(out)["input_ids"])
convert_tokens = convert_tokens[:token_length]
probs = probs[:token_length]
if "</s>" in out:
special_index = out.index("</s>")
out = out[: special_index]
token_length = len(tokenizer.encode_plus(out)["input_ids"])
convert_tokens = convert_tokens[:token_length]
probs = probs[:token_length]
if len(out) > 0 and out[0] == " ":
out = out[1:]
convert_tokens = convert_tokens[1:]
probs = probs[1:]
if isinstance(history, list):
# Update history
history.insert(0, ('ASSISTANT', out))
history.insert(0, ('USER', text))
return out

BIN
pytorch_model-00001-of-00003.bin (Stored with Git LFS) Normal file

Binary file not shown.

BIN
pytorch_model-00002-of-00003.bin (Stored with Git LFS) Normal file

Binary file not shown.

BIN
pytorch_model-00003-of-00003.bin (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,330 @@
{
"metadata": {
"total_size": 29182156800
},
"weight_map": {
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
}
}

6
special_tokens_map.json Normal file
View File

@ -0,0 +1,6 @@
{
"bos_token": "[CLS]",
"eos_token": "</s>",
"pad_token": "<|endoftext|>",
"unk_token": "<|endoftext|>"
}

199863
tokenizer.json Normal file

File diff suppressed because it is too large Load Diff

10
tokenizer_config.json Normal file
View File

@ -0,0 +1,10 @@
{
"add_prefix_space": false,
"bos_token": "[CLS]",
"clean_up_tokenization_spaces": true,
"eos_token": "</s>",
"model_max_length": 2048,
"padding_side": "right",
"tokenizer_class": "GPT2Tokenizer",
"unk_token": "<|endoftext|>"
}

1
vocab.json Normal file

File diff suppressed because one or more lines are too long