1198 lines
53 KiB
Python
1198 lines
53 KiB
Python
|
import math
|
||
|
import os
|
||
|
from typing import List, Optional, Tuple, Union, Dict, Any
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import torch.utils.checkpoint
|
||
|
from einops import rearrange
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
from transformers import add_start_docstrings, PreTrainedModel, DynamicCache, \
|
||
|
GenerationMixin, StaticCache, GenerationConfig
|
||
|
from transformers.activations import ACT2FN
|
||
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
||
|
from transformers.modeling_flash_attention_utils import _flash_supports_window_size, \
|
||
|
_upad_input
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
|
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, \
|
||
|
add_start_docstrings_to_model_forward, is_torchdynamo_compiling, logging, \
|
||
|
is_flash_attn_greater_or_equal
|
||
|
|
||
|
if is_flash_attn_2_available():
|
||
|
from flash_attn.bert_padding import pad_input
|
||
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
||
|
from flash_attn.layers.rotary import apply_rotary_emb_func
|
||
|
from .configuration_baichuan import BaichuanM1Config
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class CustomCache(DynamicCache):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.past_len = []
|
||
|
|
||
|
def get_past_len(self, layer_idx: Optional[int] = 0) -> int:
|
||
|
if len(self.past_len) <= layer_idx:
|
||
|
return 0
|
||
|
return self.past_len[layer_idx]
|
||
|
|
||
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
||
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
||
|
# TODO: deprecate this function in favor of `cache_position`
|
||
|
if len(self.key_cache) <= layer_idx:
|
||
|
return 0
|
||
|
return self.key_cache[layer_idx].shape[1]
|
||
|
|
||
|
def update(
|
||
|
self,
|
||
|
key_states: torch.Tensor,
|
||
|
value_states: torch.Tensor,
|
||
|
layer_idx: int,
|
||
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
"""
|
||
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
||
|
|
||
|
Parameters:
|
||
|
key_states (`torch.Tensor`):
|
||
|
The new key states to cache.
|
||
|
value_states (`torch.Tensor`):
|
||
|
The new value states to cache.
|
||
|
layer_idx (`int`):
|
||
|
The index of the layer to cache the states for.
|
||
|
cache_kwargs (`Dict[str, Any]`, `optional`):
|
||
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
||
|
|
||
|
Return:
|
||
|
A tuple containing the updated key and value states.
|
||
|
"""
|
||
|
# Update the number of seen tokens
|
||
|
if layer_idx == 0:
|
||
|
self._seen_tokens += key_states.shape[1]
|
||
|
|
||
|
# Update the cache
|
||
|
if len(self.key_cache) <= layer_idx:
|
||
|
self.key_cache.append(key_states)
|
||
|
self.value_cache.append(value_states)
|
||
|
else:
|
||
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=1)
|
||
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=1)
|
||
|
|
||
|
if len(self.past_len) <= layer_idx:
|
||
|
self.past_len.append(key_states.shape[1])
|
||
|
else:
|
||
|
self.past_len[layer_idx] += key_states.shape[1]
|
||
|
|
||
|
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
||
|
|
||
|
|
||
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||
|
attention_mask: torch.Tensor,
|
||
|
sequence_length: int,
|
||
|
target_length: int,
|
||
|
dtype: torch.dtype,
|
||
|
device: torch.device,
|
||
|
min_dtype: float,
|
||
|
cache_position: torch.Tensor,
|
||
|
batch_size: int,
|
||
|
):
|
||
|
"""
|
||
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||
|
|
||
|
Args:
|
||
|
attention_mask (`torch.Tensor`):
|
||
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
||
|
sequence_length (`int`):
|
||
|
The sequence length being processed.
|
||
|
target_length (`int`):
|
||
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
||
|
dtype (`torch.dtype`):
|
||
|
The dtype to use for the 4D attention mask.
|
||
|
device (`torch.device`):
|
||
|
The device to plcae the 4D attention mask on.
|
||
|
min_dtype (`float`):
|
||
|
The minimum value representable with the dtype `dtype`.
|
||
|
cache_position (`torch.Tensor`):
|
||
|
Indices depicting the position of the input sequence tokens in the sequence.
|
||
|
batch_size (`torch.Tensor`):
|
||
|
Batch size.
|
||
|
"""
|
||
|
if attention_mask is not None and attention_mask.dim() == 4:
|
||
|
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||
|
causal_mask = attention_mask
|
||
|
else:
|
||
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
||
|
if sequence_length != 1:
|
||
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||
|
if attention_mask is not None:
|
||
|
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||
|
mask_length = attention_mask.shape[-1]
|
||
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
||
|
padding_mask = padding_mask == 0
|
||
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||
|
padding_mask, min_dtype
|
||
|
)
|
||
|
|
||
|
return causal_mask
|
||
|
|
||
|
|
||
|
class BaichuanRMSNorm(nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
"""
|
||
|
RMSNorm is equivalent to T5LayerNorm
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
|
||
|
# convert into half-precision if necessary
|
||
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||
|
hidden_states = hidden_states.to(self.weight.dtype)
|
||
|
|
||
|
return self.weight * hidden_states
|
||
|
|
||
|
|
||
|
class RotaryEmbedding(torch.nn.Module):
|
||
|
def __init__(self, dim, max_position_embeddings=2048, base=1e5, device=None, interleaved=False):
|
||
|
super().__init__()
|
||
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||
|
self.base = base
|
||
|
self.dim = dim
|
||
|
# Build here to make `torch.jit.trace` work.
|
||
|
self.max_seq_len_cached = 0
|
||
|
self.interleaved = interleaved
|
||
|
|
||
|
def forward(self, q, k, seqlen_offset=None, cu_seqlens=None, max_seqlen=None):
|
||
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
||
|
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
||
|
seq_len_dim = 1
|
||
|
seq_len = q.shape[seq_len_dim] + seqlen_offset
|
||
|
if seq_len > self.max_seq_len_cached:
|
||
|
self.max_seq_len_cached = seq_len
|
||
|
self.inv_freq = 1.0 / (
|
||
|
self.base ** (torch.arange(0, self.dim, 2).float().to(self.inv_freq.device) / self.dim))
|
||
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
||
|
# freqs = torch.einsum("i,j->ij", t, self.inv_freq) # dont use this, bug in fp16
|
||
|
freqs = torch.outer(t, self.inv_freq)
|
||
|
self.cos_cached = freqs.cos().to(q.device)
|
||
|
self.sin_cached = freqs.sin().to(k.device)
|
||
|
q_ori_size = q.size()
|
||
|
k_ori_size = k.size()
|
||
|
if cu_seqlens is not None:
|
||
|
q = flatten_one_dim(q)
|
||
|
k = flatten_one_dim(k)
|
||
|
q_new = apply_rotary_emb_func(
|
||
|
q.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
|
||
|
self.interleaved, True, # inplace=True
|
||
|
cu_seqlens=cu_seqlens,
|
||
|
max_seqlen=max_seqlen
|
||
|
).to(q.dtype)
|
||
|
k_new = apply_rotary_emb_func(
|
||
|
k.float(), self.cos_cached[seqlen_offset:], self.sin_cached[seqlen_offset:],
|
||
|
self.interleaved, True,
|
||
|
cu_seqlens=cu_seqlens,
|
||
|
max_seqlen=max_seqlen
|
||
|
).to(k.dtype)
|
||
|
if cu_seqlens is not None:
|
||
|
q_new = q_new.reshape(*q_ori_size)
|
||
|
k_new = k_new.reshape(*k_ori_size)
|
||
|
return q_new, k_new
|
||
|
|
||
|
|
||
|
class BaichuanMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.intermediate_size = config.intermediate_size
|
||
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||
|
self.act_fn = ACT2FN[config.hidden_act]
|
||
|
|
||
|
def forward(self, hidden_state):
|
||
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
||
|
|
||
|
|
||
|
class BaichuanAttention(nn.Module):
|
||
|
"""
|
||
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
||
|
and "Generating Long Sequences with Sparse Transformers".
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: BaichuanM1Config, layer_idx: Optional[int] = None):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_idx = layer_idx
|
||
|
if layer_idx is None:
|
||
|
raise ValueError(
|
||
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
||
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
||
|
"when creating this class."
|
||
|
)
|
||
|
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.is_swa = layer_idx in self.config.sliding_window_layers
|
||
|
self.num_heads = config.num_swa_attention_heads if self.is_swa else config.num_attention_heads
|
||
|
self.head_dim = self.hidden_size // self.num_heads
|
||
|
self.num_key_value_heads = config.num_swa_key_value_heads if self.is_swa else config.num_key_value_heads
|
||
|
self.max_position_embeddings = config.max_position_embeddings
|
||
|
self.rope_theta = config.rope_theta
|
||
|
self.is_causal = True
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
|
||
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||
|
raise ValueError(
|
||
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||
|
f" and `num_heads`: {self.num_heads})."
|
||
|
)
|
||
|
self.W_pack = nn.Linear(config.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim,
|
||
|
bias=False)
|
||
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||
|
|
||
|
self.rotary_emb = RotaryEmbedding(dim=self.head_dim, base=self.config.rope_theta,
|
||
|
max_position_embeddings=self.config.max_position_embeddings)
|
||
|
self.conv_window = config.conv_window
|
||
|
assert self.conv_window == 2 #%% Currently, only supported window=2 when inference
|
||
|
self.conv_k = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
|
||
|
self.conv_v = nn.Parameter(torch.softmax(torch.randn((1, 1, self.num_key_value_heads, 1, self.conv_window)), dim=-1))
|
||
|
self.last_k, self.last_v = None, None
|
||
|
|
||
|
|
||
|
def get_max_seqlen(cu_seqlens):
|
||
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
||
|
return max_seqlen
|
||
|
|
||
|
|
||
|
def flatten_one_dim(tensor):
|
||
|
tensor = tensor.view(-1, tensor.size(-2), tensor.size(-1))
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def prepare_for_flash_attention_varlen(query, key, value, cu_seqlens):
|
||
|
query = query.view(-1, query.size(-2), query.size(-1))
|
||
|
key = key.view(-1, key.size(-2), key.size(-1))
|
||
|
value = value.view(-1, value.size(-2), value.size(-1))
|
||
|
return query, key, value, get_max_seqlen(cu_seqlens)
|
||
|
|
||
|
|
||
|
def flash_attention_forward(
|
||
|
query_states: torch.Tensor,
|
||
|
key_states: torch.Tensor,
|
||
|
value_states: torch.Tensor,
|
||
|
query_length: int,
|
||
|
is_causal: bool,
|
||
|
dropout: float = 0.0,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
seqlens: Optional[torch.LongTensor] = None,
|
||
|
softmax_scale: Optional[float] = None,
|
||
|
sliding_window: Optional[int] = None,
|
||
|
use_top_left_mask: bool = False,
|
||
|
softcap: Optional[float] = None,
|
||
|
deterministic: bool = None,
|
||
|
):
|
||
|
"""
|
||
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
||
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
||
|
|
||
|
Args:
|
||
|
query_states (`torch.Tensor`):
|
||
|
Input query states to be passed to Flash Attention API
|
||
|
key_states (`torch.Tensor`):
|
||
|
Input key states to be passed to Flash Attention API
|
||
|
value_states (`torch.Tensor`):
|
||
|
Input value states to be passed to Flash Attention API
|
||
|
attention_mask (`torch.Tensor`):
|
||
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
||
|
position of padding tokens and 1 for the position of non-padding tokens.
|
||
|
dropout (`float`):
|
||
|
Attention dropout
|
||
|
softmax_scale (`float`, *optional*):
|
||
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
||
|
use_top_left_mask (`bool`, defaults to `False`):
|
||
|
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
||
|
softcap (`float`, *optional*):
|
||
|
Softcap for the attention logits, used e.g. in gemma2.
|
||
|
deterministic (`bool`, *optional*):
|
||
|
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
|
||
|
"""
|
||
|
if not use_top_left_mask:
|
||
|
causal = is_causal
|
||
|
else:
|
||
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. .
|
||
|
causal = is_causal and query_length != 1
|
||
|
|
||
|
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
|
||
|
use_sliding_windows = (
|
||
|
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
|
||
|
)
|
||
|
flash_kwargs = {"window_size": (sliding_window - 1, 0)} if use_sliding_windows else {}
|
||
|
|
||
|
if is_flash_attn_greater_or_equal("2.4.1"):
|
||
|
if deterministic is None:
|
||
|
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
|
||
|
flash_kwargs["deterministic"] = deterministic
|
||
|
|
||
|
if softcap is not None:
|
||
|
flash_kwargs["softcap"] = softcap
|
||
|
# Contains at least one padding token in the sequence
|
||
|
if seqlens is not None:
|
||
|
batch_size = query_states.shape[0]
|
||
|
query_states, key_states, value_states, max_seqlen = prepare_for_flash_attention_varlen(query_states,
|
||
|
key_states,
|
||
|
value_states, seqlens)
|
||
|
attn_output = flash_attn_varlen_func(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
cu_seqlens_q=seqlens,
|
||
|
cu_seqlens_k=seqlens,
|
||
|
max_seqlen_q=max_seqlen,
|
||
|
max_seqlen_k=max_seqlen,
|
||
|
dropout_p=dropout,
|
||
|
softmax_scale=softmax_scale,
|
||
|
causal=causal,
|
||
|
**flash_kwargs,
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.reshape(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
|
||
|
|
||
|
elif attention_mask is not None:
|
||
|
batch_size = query_states.shape[0]
|
||
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
|
||
|
query_states, key_states, value_states, attention_mask, query_length
|
||
|
)
|
||
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
||
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
||
|
attn_output_unpad = flash_attn_varlen_func(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
cu_seqlens_q=cu_seqlens_q,
|
||
|
cu_seqlens_k=cu_seqlens_k,
|
||
|
max_seqlen_q=max_seqlen_in_batch_q,
|
||
|
max_seqlen_k=max_seqlen_in_batch_k,
|
||
|
dropout_p=dropout,
|
||
|
softmax_scale=softmax_scale,
|
||
|
causal=causal,
|
||
|
**flash_kwargs,
|
||
|
)
|
||
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
||
|
|
||
|
else:
|
||
|
attn_output = flash_attn_func(
|
||
|
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
|
||
|
)
|
||
|
|
||
|
return attn_output
|
||
|
|
||
|
|
||
|
def custom_convolution(U, K):
|
||
|
"""
|
||
|
U: Input matrix, shape (bs, seq, h, d)
|
||
|
K: Convolution kernel, shape (w, h)
|
||
|
Returns: Output matrix V, shape (bs, seq, h, d)
|
||
|
"""
|
||
|
# h, w = K.shape
|
||
|
w = K.size(-1)
|
||
|
padding = (w - 1, 0)
|
||
|
U_padded = F.pad(U, (0, 0, 0, 0, *padding)) # Shape becomes (bs, seq+w-1, h, d)
|
||
|
U_unfolded = U_padded.unfold(1, w, 1) # Shape becomes (bs, seq+w-1, h, d, w)
|
||
|
V_unfolded = U_unfolded * K # Shape remains (bs, seq, h, d, w)
|
||
|
V = V_unfolded.sum(dim=-1) # Shape becomes (bs, seq, h, d)
|
||
|
return V
|
||
|
|
||
|
|
||
|
def custom_convolution_with_splits(U, K, cu_seqlens):
|
||
|
"""
|
||
|
U: Input matrix, shape (bs, seq, h, d)
|
||
|
K: Convolution kernel, shape (w, h)
|
||
|
cu_seqlens: Cumulative sequence lengths, indicating how to split the input.
|
||
|
Returns: Output matrix, shape (bs, seq, h, d)
|
||
|
"""
|
||
|
ori_shape = U.size() # Save the original shape of U
|
||
|
# Flatten U to handle variable-length sequences
|
||
|
U_flatten = U.reshape(1, -1, ori_shape[-2], ori_shape[-1]) # Shape: (1, total_seq, h, d)
|
||
|
|
||
|
# Perform convolution on each subsequence separately
|
||
|
V_parts = [] # Store the results of each subsequence
|
||
|
start = 0 # Start index of the current subsequence
|
||
|
for end in cu_seqlens[1:]:
|
||
|
end = end.item() # Convert scalar tensor to int
|
||
|
U_part = U_flatten[:, start:end, :, :] # Slice the subsequence (1, seq_sub, h, d)
|
||
|
V_part = custom_convolution(U_part, K) # Apply custom convolution
|
||
|
V_parts.append(V_part) # Append the result
|
||
|
start = end # Update the start index for the next subsequence
|
||
|
|
||
|
# Concatenate the results along the sequence dimension
|
||
|
V = torch.cat(V_parts, dim=1).to(U) # Shape: (1, total_seq, h, d)
|
||
|
|
||
|
# Reshape the output to match the original input shape
|
||
|
return V.reshape(ori_shape)
|
||
|
|
||
|
|
||
|
class BaichuanFlashAttention2(BaichuanAttention):
|
||
|
"""
|
||
|
Baichuan flash attention module, following Baichuan attention module. This module inherits from `BaichuanAttention`
|
||
|
as the weights of the module stays untouched. The only required change would be on the forward pass
|
||
|
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
||
|
in case the input contains any of them.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
seqlens: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[CustomCache] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
||
|
):
|
||
|
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
proj = self.W_pack(hidden_states)
|
||
|
proj = rearrange(proj, 'bs seq_len (n_head head_dim) -> n_head bs seq_len head_dim', head_dim=self.head_dim)
|
||
|
query_states = rearrange(proj[:self.num_heads], 'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
||
|
key_states = rearrange(proj[self.num_heads:self.num_heads + self.num_key_value_heads],
|
||
|
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
||
|
value_states = rearrange(proj[self.num_heads + self.num_key_value_heads:],
|
||
|
'n_head bs seq_len head_dim -> bs seq_len n_head head_dim')
|
||
|
|
||
|
|
||
|
if past_key_value is None or past_key_value.get_seq_length(self.layer_idx) == 0:# prefill
|
||
|
if not self.training:
|
||
|
self.last_k = key_states[:, -1:]
|
||
|
self.last_v = value_states[:, -1:]
|
||
|
if seqlens is None:
|
||
|
key_states = custom_convolution(key_states, self.conv_k)
|
||
|
value_states = custom_convolution(value_states, self.conv_v)
|
||
|
else:
|
||
|
assert seqlens.ndim==1
|
||
|
key_states=custom_convolution_with_splits(key_states,self.conv_k,seqlens)
|
||
|
value_states=custom_convolution_with_splits(value_states,self.conv_v,seqlens)
|
||
|
else: # decode
|
||
|
self.last_k, key_states = key_states, self.conv_k[0, 0, :, 0, :1] * self.last_k + self.conv_k[0, 0, :, 0, 1:] * key_states
|
||
|
self.last_v, value_states = value_states, self.conv_v[0, 0, :, 0, :1] * self.last_v + self.conv_v[0, 0, :, 0, 1:] * value_states
|
||
|
if seqlens is not None:
|
||
|
max_seqlen = get_max_seqlen(seqlens)
|
||
|
else:
|
||
|
max_seqlen = None
|
||
|
|
||
|
past_len = past_key_value.get_past_len(self.layer_idx) if past_key_value is not None else 0
|
||
|
query_states, key_states = self.rotary_emb(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
seqlen_offset=past_len,
|
||
|
cu_seqlens=seqlens,
|
||
|
max_seqlen=max_seqlen
|
||
|
)
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
||
|
kv_seq_len = key_states.shape[1] + past_key_value.get_seq_length(self.layer_idx)
|
||
|
if (
|
||
|
self.is_swa
|
||
|
and kv_seq_len > self.config.sliding_window
|
||
|
and cache_has_contents
|
||
|
):
|
||
|
slicing_tokens = 1 - self.config.sliding_window
|
||
|
past_key = past_key_value[self.layer_idx][0]
|
||
|
past_value = past_key_value[self.layer_idx][1]
|
||
|
|
||
|
past_key_value.key_cache[self.layer_idx] = past_key[:, slicing_tokens:, :, :].contiguous()
|
||
|
past_key_value.value_cache[self.layer_idx] = past_value[:, slicing_tokens:, :, :].contiguous()
|
||
|
|
||
|
if past_key_value[self.layer_idx][0].shape[1] != self.config.sliding_window - 1:
|
||
|
raise ValueError(
|
||
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
||
|
f" {past_key.shape}"
|
||
|
)
|
||
|
|
||
|
# if attention_mask is not None:
|
||
|
# # TODO: not check!!
|
||
|
# attention_mask = attention_mask[:, slicing_tokens:]
|
||
|
# attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
||
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
|
||
|
|
||
|
input_dtype = query_states.dtype
|
||
|
if input_dtype == torch.float32:
|
||
|
if torch.is_autocast_enabled():
|
||
|
target_dtype = torch.get_autocast_gpu_dtype()
|
||
|
# Handle the case where the model is quantized
|
||
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||
|
target_dtype = self.config._pre_quantization_dtype
|
||
|
else:
|
||
|
target_dtype = self.q_proj.weight.dtype
|
||
|
|
||
|
logger.warning_once(
|
||
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
||
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
||
|
f" {target_dtype}."
|
||
|
)
|
||
|
|
||
|
query_states = query_states.to(target_dtype)
|
||
|
key_states = key_states.to(target_dtype)
|
||
|
value_states = value_states.to(target_dtype)
|
||
|
|
||
|
if self.is_swa:
|
||
|
sliding_window = self.config.sliding_window
|
||
|
else:
|
||
|
sliding_window = None
|
||
|
attn_output = flash_attention_forward(
|
||
|
query_states,
|
||
|
key_states,
|
||
|
value_states,
|
||
|
query_length=q_len,
|
||
|
position_ids=position_ids,
|
||
|
seqlens=seqlens,
|
||
|
sliding_window=sliding_window,
|
||
|
is_causal=self.is_causal,
|
||
|
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
||
|
)
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
Baichuan_ATTENTION_CLASSES = {
|
||
|
"eager": BaichuanAttention,
|
||
|
"flash_attention_2": BaichuanFlashAttention2,
|
||
|
}
|
||
|
|
||
|
|
||
|
class BaichuanDecoderLayer(nn.Module):
|
||
|
def __init__(self, config: BaichuanM1Config, layer_idx: int):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.layer_idx = layer_idx
|
||
|
self.self_attn = Baichuan_ATTENTION_CLASSES['flash_attention_2'](config, layer_idx)
|
||
|
|
||
|
self.mlp = BaichuanMLP(config)
|
||
|
self.input_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
self.post_attention_layernorm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
seqlens: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||
|
**kwargs,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||
|
`(batch, sequence_length)` where padding elements are indicated by 0.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
|
(see `past_key_values`).
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
|
Indices depicting the position of the input sequence tokens in the sequence.
|
||
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
||
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
||
|
with `head_dim` being the embedding dimension of each attention head.
|
||
|
kwargs (`dict`, *optional*):
|
||
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
||
|
into the model
|
||
|
"""
|
||
|
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
|
||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
seqlens=seqlens,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
position_embeddings=position_embeddings,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
Baichuan_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`BaichuanM1Config`]):
|
||
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
|
load the weights associated with the model, only the configuration. Check out the
|
||
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Bai chuan Model outputting raw hidden-states without any specific head on top.",
|
||
|
Baichuan_START_DOCSTRING,
|
||
|
)
|
||
|
class BaichuanPreTrainedModel(PreTrainedModel):
|
||
|
config_class = BaichuanM1Config
|
||
|
base_model_prefix = "model"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["BaichuanDecoderLayer"]
|
||
|
_skip_keys_device_placement = "past_key_values"
|
||
|
_supports_flash_attn_2 = True
|
||
|
_supports_sdpa = True
|
||
|
_supports_cache_class = True
|
||
|
_supports_quantized_cache = True
|
||
|
_supports_static_cache = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
std = self.config.initializer_range
|
||
|
if isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
|
||
|
Baichuan_INPUTS_DOCSTRING = r"""
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Baichuan Model outputting raw hidden-states without any specific head on top.",
|
||
|
Baichuan_START_DOCSTRING,
|
||
|
)
|
||
|
class BaichuanModel(BaichuanPreTrainedModel):
|
||
|
"""
|
||
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BaichuanDecoderLayer`]
|
||
|
|
||
|
Args:
|
||
|
config: BaichuanM1Config
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: BaichuanM1Config):
|
||
|
super().__init__(config)
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.vocab_size = config.vocab_size
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||
|
self.layers = nn.ModuleList(
|
||
|
[BaichuanDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
self._attn_implementation = config._attn_implementation
|
||
|
self.norm = BaichuanRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
|
||
|
self.gradient_checkpointing = True
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
seqlens: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[CustomCache] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
|
raise ValueError(
|
||
|
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||
|
)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
if seqlens is not None:
|
||
|
assert seqlens.ndim == 2
|
||
|
# batch multi-pack 样本拉平
|
||
|
cu_seqlens = []
|
||
|
offset, seqlen = 0, seqlens.size(1)
|
||
|
for lens in seqlens:
|
||
|
cu_seqlens.append(offset)
|
||
|
cu_seqlens.extend((lens[(lens > 0) & (lens < seqlen)] + offset).tolist())
|
||
|
offset += seqlen
|
||
|
cu_seqlens.append(offset)
|
||
|
seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=input_ids.device)
|
||
|
# unset attention_mask to save memory
|
||
|
attention_mask = None
|
||
|
# kept for BC (non `Cache` `past_key_values` inputs)
|
||
|
return_legacy_cache = False
|
||
|
if use_cache and not isinstance(past_key_values, CustomCache):
|
||
|
return_legacy_cache = False
|
||
|
if past_key_values is None:
|
||
|
past_key_values = CustomCache()
|
||
|
else:
|
||
|
past_key_values = CustomCache.from_legacy_cache(past_key_values)
|
||
|
logger.warning_once(
|
||
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
||
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
||
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
||
|
)
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
|
||
|
if cache_position is None:
|
||
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
|
cache_position = torch.arange(
|
||
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
|
)
|
||
|
if position_ids is None:
|
||
|
position_ids = cache_position.unsqueeze(0)
|
||
|
|
||
|
causal_mask = self._update_causal_mask(
|
||
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||
|
)
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
# create position embeddings to be shared across the decoder layers
|
||
|
# position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||
|
position_embeddings = None
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
next_decoder_cache = None
|
||
|
|
||
|
for decoder_layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||
|
decoder_layer,
|
||
|
hidden_states,
|
||
|
causal_mask,
|
||
|
position_ids,
|
||
|
seqlens,
|
||
|
past_key_values,
|
||
|
output_attentions,
|
||
|
use_cache,
|
||
|
cache_position,
|
||
|
position_embeddings,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=causal_mask,
|
||
|
position_ids=position_ids,
|
||
|
seqlens=seqlens,
|
||
|
past_key_value=past_key_values,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
cache_position=cache_position,
|
||
|
position_embeddings=position_embeddings,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if use_cache:
|
||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
next_cache = next_decoder_cache if use_cache else None
|
||
|
if return_legacy_cache:
|
||
|
next_cache = next_cache.to_legacy_cache()
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||
|
return BaseModelOutputWithPast(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _update_causal_mask(
|
||
|
self,
|
||
|
attention_mask: torch.Tensor,
|
||
|
input_tensor: torch.Tensor,
|
||
|
cache_position: torch.Tensor,
|
||
|
past_key_values: CustomCache,
|
||
|
output_attentions: bool,
|
||
|
):
|
||
|
if self.config._attn_implementation == "flash_attention_2":
|
||
|
if attention_mask is not None and 0.0 in attention_mask:
|
||
|
return attention_mask
|
||
|
return None
|
||
|
|
||
|
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||
|
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||
|
# to infer the attention mask.
|
||
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
|
using_static_cache = isinstance(past_key_values, StaticCache)
|
||
|
|
||
|
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||
|
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||
|
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||
|
attention_mask,
|
||
|
inputs_embeds=input_tensor,
|
||
|
past_key_values_length=past_seen_tokens,
|
||
|
is_training=self.training,
|
||
|
):
|
||
|
return None
|
||
|
|
||
|
dtype, device = input_tensor.dtype, input_tensor.device
|
||
|
min_dtype = torch.finfo(dtype).min
|
||
|
sequence_length = input_tensor.shape[1]
|
||
|
if using_static_cache:
|
||
|
target_length = past_key_values.get_max_length()
|
||
|
else:
|
||
|
target_length = (
|
||
|
attention_mask.shape[-1]
|
||
|
if isinstance(attention_mask, torch.Tensor)
|
||
|
else past_seen_tokens + sequence_length + 1
|
||
|
)
|
||
|
|
||
|
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||
|
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
||
|
attention_mask,
|
||
|
sequence_length=sequence_length,
|
||
|
target_length=target_length,
|
||
|
dtype=dtype,
|
||
|
device=device,
|
||
|
min_dtype=min_dtype,
|
||
|
cache_position=cache_position,
|
||
|
batch_size=input_tensor.shape[0],
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
self.config._attn_implementation == "sdpa"
|
||
|
and attention_mask is not None
|
||
|
and attention_mask.device.type == "cuda"
|
||
|
and not output_attentions
|
||
|
):
|
||
|
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||
|
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||
|
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||
|
|
||
|
return causal_mask
|
||
|
|
||
|
|
||
|
class NormHead(nn.Module):
|
||
|
def __init__(self, hidden_size, vocab_size, bias=False):
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
||
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
norm_weight = nn.functional.normalize(self.weight)
|
||
|
return nn.functional.linear(hidden_states, norm_weight)
|
||
|
|
||
|
|
||
|
class BaichuanM1ForCausalLM(BaichuanPreTrainedModel, GenerationMixin):
|
||
|
_tied_weights_keys = ["lm_head.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.model = BaichuanModel(config)
|
||
|
self.vocab_size = config.vocab_size
|
||
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.model.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.model.embed_tokens = value
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def set_decoder(self, decoder):
|
||
|
self.model = decoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.model
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(Baichuan_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
seqlens: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
cache_position: Optional[torch.LongTensor] = None,
|
||
|
num_logits_to_keep: int = 0,
|
||
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
|
r"""
|
||
|
Args:
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
|
||
|
num_logits_to_keep (`int`, *optional*):
|
||
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
||
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
||
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, BaichuanForCausalLM
|
||
|
|
||
|
>>> model = BaichuanForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
||
|
|
||
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||
|
|
||
|
>>> # Generate
|
||
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
if input_ids is not None:
|
||
|
input_ids[input_ids == self.config.vocab_size] = 0
|
||
|
if labels is not None:
|
||
|
labels[labels == self.config.vocab_size] = 0
|
||
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
|
outputs = self.model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
seqlens=seqlens,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
cache_position=cache_position,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
if labels is None and not is_torchdynamo_compiling():
|
||
|
logger.warning_once(
|
||
|
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)"
|
||
|
)
|
||
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||
|
# TODO: remove the float() operation in v4.46
|
||
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
||
|
# logits = logits.float()
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
#shift_logits = logits
|
||
|
#shift_labels = labels
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||
|
shift_labels = shift_labels.view(-1)
|
||
|
# Enable model parallelism
|
||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||
|
loss = loss_fct(shift_logits, shift_labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self,
|
||
|
input_ids,
|
||
|
past_key_values=None,
|
||
|
attention_mask=None,
|
||
|
inputs_embeds=None,
|
||
|
cache_position=None,
|
||
|
position_ids=None,
|
||
|
use_cache=True,
|
||
|
num_logits_to_keep=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
||
|
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
||
|
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
||
|
if past_key_values is not None:
|
||
|
if inputs_embeds is not None: # Exception 1
|
||
|
input_ids = input_ids[:, -cache_position.shape[0]:]
|
||
|
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
||
|
input_ids = input_ids[:, cache_position]
|
||
|
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if past_key_values:
|
||
|
position_ids = position_ids[:, -input_ids.shape[1]:]
|
||
|
|
||
|
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
||
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and cache_position[0] == 0:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
||
|
else:
|
||
|
# The clone here is for the same reason as for `position_ids`.
|
||
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
||
|
|
||
|
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
||
|
if model_inputs["inputs_embeds"] is not None:
|
||
|
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
||
|
device = model_inputs["inputs_embeds"].device
|
||
|
else:
|
||
|
batch_size, sequence_length = model_inputs["input_ids"].shape
|
||
|
device = model_inputs["input_ids"].device
|
||
|
|
||
|
dtype = self.lm_head.weight.dtype
|
||
|
min_dtype = torch.finfo(dtype).min
|
||
|
|
||
|
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
||
|
attention_mask,
|
||
|
sequence_length=sequence_length,
|
||
|
target_length=past_key_values.get_max_length(),
|
||
|
dtype=dtype,
|
||
|
device=device,
|
||
|
min_dtype=min_dtype,
|
||
|
cache_position=cache_position,
|
||
|
batch_size=batch_size,
|
||
|
)
|
||
|
|
||
|
if num_logits_to_keep is not None:
|
||
|
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"cache_position": cache_position,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": use_cache,
|
||
|
"attention_mask": attention_mask,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def chat(self, tokenizer, messages: List[dict], stream=False,
|
||
|
generation_config: Optional[GenerationConfig] = None):
|
||
|
generation_config = generation_config or self.generation_config
|
||
|
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True)
|
||
|
input_ids = torch.LongTensor([input_ids]).to(self.device)
|
||
|
if stream:
|
||
|
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||
|
Thread(target=self.generate, kwargs=dict(
|
||
|
inputs=input_ids, streamer=streamer,
|
||
|
generation_config=generation_config,
|
||
|
)).start()
|
||
|
return streamer
|
||
|
else:
|
||
|
outputs = self.generate(input_ids, generation_config=generation_config)
|
||
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
||
|
return response
|