108 lines
3.4 KiB
Python
108 lines
3.4 KiB
Python
|
# Modified from Matcha-TTS https://github.com/shivammehta25/Matcha-TTS
|
||
|
"""
|
||
|
MIT License
|
||
|
|
||
|
Copyright (c) 2023 Shivam Mehta
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in all
|
||
|
copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
SOFTWARE.
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.utils.data
|
||
|
from librosa.filters import mel as librosa_mel_fn
|
||
|
from scipy.io.wavfile import read
|
||
|
|
||
|
MAX_WAV_VALUE = 32768.0
|
||
|
|
||
|
|
||
|
def load_wav(full_path):
|
||
|
sampling_rate, data = read(full_path)
|
||
|
return data, sampling_rate
|
||
|
|
||
|
|
||
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||
|
|
||
|
|
||
|
def dynamic_range_decompression(x, C=1):
|
||
|
return np.exp(x) / C
|
||
|
|
||
|
|
||
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||
|
|
||
|
|
||
|
def dynamic_range_decompression_torch(x, C=1):
|
||
|
return torch.exp(x) / C
|
||
|
|
||
|
|
||
|
def spectral_normalize_torch(magnitudes):
|
||
|
output = dynamic_range_compression_torch(magnitudes)
|
||
|
return output
|
||
|
|
||
|
|
||
|
def spectral_de_normalize_torch(magnitudes):
|
||
|
output = dynamic_range_decompression_torch(magnitudes)
|
||
|
return output
|
||
|
|
||
|
|
||
|
mel_basis = {}
|
||
|
hann_window = {}
|
||
|
|
||
|
|
||
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||
|
if torch.min(y) < -1.0:
|
||
|
print("min value is ", torch.min(y))
|
||
|
if torch.max(y) > 1.0:
|
||
|
print("max value is ", torch.max(y))
|
||
|
|
||
|
global mel_basis, hann_window # pylint: disable=global-statement
|
||
|
if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
|
||
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||
|
mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
|
||
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
||
|
|
||
|
y = torch.nn.functional.pad(
|
||
|
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||
|
)
|
||
|
y = y.squeeze(1)
|
||
|
|
||
|
spec = torch.view_as_real(
|
||
|
torch.stft(
|
||
|
y,
|
||
|
n_fft,
|
||
|
hop_length=hop_size,
|
||
|
win_length=win_size,
|
||
|
window=hann_window[str(y.device)],
|
||
|
center=center,
|
||
|
pad_mode="reflect",
|
||
|
normalized=False,
|
||
|
onesided=True,
|
||
|
return_complex=True,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
||
|
|
||
|
spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
|
||
|
spec = spectral_normalize_torch(spec)
|
||
|
|
||
|
return spec
|