84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
|
from typing import List
|
||
|
from queue import Queue
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
|
||
|
def _parse_messages(messages, split_role="user"):
|
||
|
system, rounds = "", []
|
||
|
round = []
|
||
|
for i, message in enumerate(messages):
|
||
|
if message["role"] == "system":
|
||
|
assert i == 0
|
||
|
system = message["content"]
|
||
|
continue
|
||
|
if message["role"] == split_role and round:
|
||
|
rounds.append(round)
|
||
|
round = []
|
||
|
round.append(message)
|
||
|
if round:
|
||
|
rounds.append(round)
|
||
|
return system, rounds
|
||
|
|
||
|
max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
|
||
|
max_input_tokens = model.config.model_max_length - max_new_tokens
|
||
|
system, rounds = _parse_messages(messages, split_role="user")
|
||
|
system_tokens = tokenizer.encode(system)
|
||
|
max_history_tokens = max_input_tokens - len(system_tokens)
|
||
|
|
||
|
history_tokens = []
|
||
|
for round in rounds[::-1]:
|
||
|
round_tokens = []
|
||
|
for message in round:
|
||
|
if message["role"] == "user":
|
||
|
round_tokens.append(model.generation_config.user_token_id)
|
||
|
else:
|
||
|
round_tokens.append(model.generation_config.assistant_token_id)
|
||
|
round_tokens.extend(tokenizer.encode(message["content"]))
|
||
|
if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
|
||
|
history_tokens = round_tokens + history_tokens # concat left
|
||
|
if len(history_tokens) < max_history_tokens:
|
||
|
continue
|
||
|
break
|
||
|
|
||
|
input_tokens = system_tokens + history_tokens
|
||
|
if messages[-1]["role"] != "assistant":
|
||
|
input_tokens.append(model.generation_config.assistant_token_id)
|
||
|
input_tokens = input_tokens[-max_input_tokens:] # truncate left
|
||
|
return torch.LongTensor([input_tokens]).to(model.device)
|
||
|
|
||
|
|
||
|
class TextIterStreamer:
|
||
|
def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
|
||
|
self.tokenizer = tokenizer
|
||
|
self.skip_prompt = skip_prompt
|
||
|
self.skip_special_tokens = skip_special_tokens
|
||
|
self.tokens = []
|
||
|
self.text_queue = Queue()
|
||
|
self.next_tokens_are_prompt = True
|
||
|
|
||
|
def put(self, value):
|
||
|
if self.skip_prompt and self.next_tokens_are_prompt:
|
||
|
self.next_tokens_are_prompt = False
|
||
|
else:
|
||
|
if len(value.shape) > 1:
|
||
|
value = value[0]
|
||
|
self.tokens.extend(value.tolist())
|
||
|
self.text_queue.put(
|
||
|
self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
|
||
|
|
||
|
def end(self):
|
||
|
self.text_queue.put(None)
|
||
|
|
||
|
def __iter__(self):
|
||
|
return self
|
||
|
|
||
|
def __next__(self):
|
||
|
value = self.text_queue.get()
|
||
|
if value is None:
|
||
|
raise StopIteration()
|
||
|
else:
|
||
|
return value
|
||
|
|