786 lines
32 KiB
Python
786 lines
32 KiB
Python
|
# Copyright 2023 Baichuan Inc. All Rights Reserved.
|
||
|
|
||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||
|
# and OPT implementations in this library. It has been modified from its
|
||
|
# original forms to accommodate minor architectural differences compared
|
||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
from .configuration_baichuan import BaichuanConfig
|
||
|
from .generation_utils import build_chat_input, TextIterStreamer
|
||
|
|
||
|
import math
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
from threading import Thread
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
from torch.nn import functional as F
|
||
|
from transformers import PreTrainedModel, PretrainedConfig
|
||
|
from transformers.activations import ACT2FN
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
|
from transformers.generation.utils import GenerationConfig
|
||
|
from transformers.utils import logging, ContextManagers
|
||
|
|
||
|
import os
|
||
|
from contextlib import contextmanager
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
try:
|
||
|
from xformers import ops as xops
|
||
|
except ImportError:
|
||
|
xops = None
|
||
|
logger.warning(
|
||
|
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
||
|
def _make_causal_mask(
|
||
|
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
||
|
):
|
||
|
"""
|
||
|
Make causal mask used for bi-directional self-attention.
|
||
|
"""
|
||
|
bsz, tgt_len = input_ids_shape
|
||
|
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
||
|
mask_cond = torch.arange(mask.size(-1), device=device)
|
||
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
||
|
mask = mask.to(dtype)
|
||
|
|
||
|
if past_key_values_length > 0:
|
||
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
||
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
||
|
|
||
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
||
|
"""
|
||
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||
|
"""
|
||
|
if len(mask.size()) == 3:
|
||
|
bsz, src_len, _ = mask.size()
|
||
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
||
|
expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||
|
else:
|
||
|
bsz, src_len = mask.size()
|
||
|
tgt_len = tgt_len if tgt_len is not None else src_len
|
||
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||
|
|
||
|
inverted_mask = 1.0 - expanded_mask
|
||
|
|
||
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||
|
|
||
|
|
||
|
class RMSNorm(nn.Module):
|
||
|
def __init__(self, hidden_size, eps=1e-6):
|
||
|
"""
|
||
|
RMSNorm is equivalent to T5LayerNorm
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
|
self.variance_epsilon = eps
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
|
|
||
|
# convert into half-precision if necessary
|
||
|
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||
|
hidden_states = hidden_states.to(self.weight.dtype)
|
||
|
|
||
|
return self.weight * hidden_states
|
||
|
|
||
|
|
||
|
class RotaryEmbedding(torch.nn.Module):
|
||
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
||
|
super().__init__()
|
||
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||
|
self.max_seq_len_cached = max_position_embeddings
|
||
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
||
|
freqs = torch.outer(t, self.inv_freq)
|
||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
|
||
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
|
||
|
def forward(self, x, seq_len=None):
|
||
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
||
|
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
||
|
if seq_len > self.max_seq_len_cached:
|
||
|
self.max_seq_len_cached = seq_len
|
||
|
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
||
|
freqs = torch.outer(t, self.inv_freq)
|
||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||
|
self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
|
||
|
self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
|
||
|
elif self.cos_cached.device != x.device:
|
||
|
self.cos_cached = self.cos_cached.to(x.device)
|
||
|
self.sin_cached = self.sin_cached.to(x.device)
|
||
|
return (
|
||
|
self.cos_cached[:, :, :seq_len, ...],
|
||
|
self.sin_cached[:, :, :seq_len, ...],
|
||
|
)
|
||
|
|
||
|
|
||
|
def rotate_half(x):
|
||
|
"""Rotates half the hidden dims of the input."""
|
||
|
x1 = x[..., : x.shape[-1] // 2]
|
||
|
x2 = x[..., x.shape[-1] // 2:]
|
||
|
return torch.cat((-x2, x1), dim=-1)
|
||
|
|
||
|
|
||
|
def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
|
||
|
cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
|
||
|
sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
|
||
|
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||
|
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||
|
q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
|
||
|
k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
|
||
|
return q_embed.to(q.dtype), k_embed.to(k.dtype)
|
||
|
|
||
|
|
||
|
class MLP(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size: int,
|
||
|
intermediate_size: int,
|
||
|
hidden_act: str,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
||
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||
|
self.act_fn = ACT2FN[hidden_act]
|
||
|
|
||
|
def forward(self, x):
|
||
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||
|
|
||
|
|
||
|
class Attention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
def __init__(self, config: BaichuanConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.hidden_size // self.num_heads
|
||
|
self.max_position_embeddings = config.max_position_embeddings
|
||
|
|
||
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||
|
raise ValueError(
|
||
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||
|
f" and `num_heads`: {self.num_heads})."
|
||
|
)
|
||
|
self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
|
||
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||
|
self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: bool = False,
|
||
|
use_cache: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
bsz, q_len, _ = hidden_states.size()
|
||
|
|
||
|
proj = self.W_pack(hidden_states)
|
||
|
proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
|
||
|
query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
kv_seq_len = key_states.shape[-2]
|
||
|
if past_key_value is not None:
|
||
|
kv_seq_len += past_key_value[0].shape[-2]
|
||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||
|
# [bsz, nh, t, hd]
|
||
|
|
||
|
if past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
|
||
|
past_key_value = (key_states, value_states) if use_cache else None
|
||
|
if xops is not None and self.training:
|
||
|
attn_weights = None
|
||
|
query_states = query_states.transpose(1, 2)
|
||
|
key_states = key_states.transpose(1, 2)
|
||
|
value_states = value_states.transpose(1, 2)
|
||
|
attn_output = xops.memory_efficient_attention(
|
||
|
query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
|
||
|
)
|
||
|
else:
|
||
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||
|
attn_output = self.o_proj(attn_output)
|
||
|
|
||
|
if not output_attentions:
|
||
|
attn_weights = None
|
||
|
|
||
|
return attn_output, attn_weights, past_key_value
|
||
|
|
||
|
|
||
|
class DecoderLayer(nn.Module):
|
||
|
def __init__(self, config: BaichuanConfig):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.self_attn = Attention(config=config)
|
||
|
self.mlp = MLP(
|
||
|
hidden_size=self.hidden_size,
|
||
|
intermediate_size=config.intermediate_size,
|
||
|
hidden_act=config.hidden_act,
|
||
|
)
|
||
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
|
||
|
# Self Attention
|
||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class BaichuanPreTrainedModel(PreTrainedModel):
|
||
|
config_class = BaichuanConfig
|
||
|
base_model_prefix = "model"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = ["DecoderLayer"]
|
||
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
std = self.config.initializer_range
|
||
|
if isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
|
||
|
def _set_gradient_checkpointing(self, module, value=False):
|
||
|
if isinstance(module, BaichuanModel):
|
||
|
module.gradient_checkpointing = value
|
||
|
|
||
|
|
||
|
class BaichuanModel(BaichuanPreTrainedModel):
|
||
|
def __init__(self, config: BaichuanConfig):
|
||
|
super().__init__(config)
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.vocab_size = config.vocab_size
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||
|
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
||
|
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||
|
# create causal mask
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
combined_attention_mask = None
|
||
|
if input_shape[-1] > 1:
|
||
|
combined_attention_mask = _make_causal_mask(
|
||
|
input_shape,
|
||
|
inputs_embeds.dtype,
|
||
|
device=inputs_embeds.device,
|
||
|
past_key_values_length=past_key_values_length,
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
||
|
inputs_embeds.device
|
||
|
)
|
||
|
combined_attention_mask = (
|
||
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||
|
)
|
||
|
|
||
|
return combined_attention_mask
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# retrieve input_ids and inputs_embeds
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
batch_size, seq_length = input_ids.shape
|
||
|
elif inputs_embeds is not None:
|
||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||
|
else:
|
||
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||
|
|
||
|
seq_length_with_past = seq_length
|
||
|
past_key_values_length = 0
|
||
|
|
||
|
if past_key_values is not None:
|
||
|
past_key_values_length = past_key_values[0][0].shape[2]
|
||
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||
|
|
||
|
if position_ids is None:
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
position_ids = torch.arange(
|
||
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||
|
)
|
||
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||
|
else:
|
||
|
position_ids = position_ids.view(-1, seq_length).long()
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
# embed positions
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(
|
||
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
||
|
)
|
||
|
attention_mask = self._prepare_decoder_attention_mask(
|
||
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
||
|
)
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
# decoder layers
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
next_decoder_cache = () if use_cache else None
|
||
|
|
||
|
for idx, decoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
|
||
|
def create_custom_forward(module):
|
||
|
def custom_forward(*inputs):
|
||
|
# None for past_key_value
|
||
|
return module(*inputs, output_attentions, None)
|
||
|
|
||
|
return custom_forward
|
||
|
|
||
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||
|
create_custom_forward(decoder_layer),
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
position_ids,
|
||
|
None,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
next_cache = next_decoder_cache if use_cache else None
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||
|
return BaseModelOutputWithPast(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
)
|
||
|
|
||
|
|
||
|
class NormHead(nn.Module):
|
||
|
def __init__(self, hidden_size, vocab_size, bias=False):
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
|
||
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||
|
self.first_flag = True
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
if self.training:
|
||
|
norm_weight = nn.functional.normalize(self.weight)
|
||
|
self.first_flag = True
|
||
|
elif self.first_flag:
|
||
|
self.first_flag = False
|
||
|
self.weight.data = nn.functional.normalize(self.weight)
|
||
|
norm_weight = self.weight
|
||
|
else:
|
||
|
norm_weight = self.weight
|
||
|
return nn.functional.linear(hidden_states, norm_weight)
|
||
|
|
||
|
_init_weights = True
|
||
|
@contextmanager
|
||
|
def no_init_weights(_enable=True):
|
||
|
global _init_weights
|
||
|
old_init_weights = _init_weights
|
||
|
if _enable:
|
||
|
_init_weights = False
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
_init_weights = old_init_weights
|
||
|
|
||
|
class BaichuanForCausalLM(BaichuanPreTrainedModel):
|
||
|
def __init__(self, config, *model_args, **model_kwargs):
|
||
|
super().__init__(config, *model_args, **model_kwargs)
|
||
|
self.model = BaichuanModel(config)
|
||
|
|
||
|
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
|
||
|
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
|
||
|
try:
|
||
|
from .quantizer import quantize_offline, init_model_weight_int4
|
||
|
except ImportError:
|
||
|
raise ImportError(f"Needs QLinear to run quantize.")
|
||
|
quantize_offline(self, 4)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.model.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.model.embed_tokens = value
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.lm_head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.lm_head = new_embeddings
|
||
|
|
||
|
def set_decoder(self, decoder):
|
||
|
self.model = decoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.model
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(
|
||
|
cls,
|
||
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
||
|
*model_args,
|
||
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
||
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||
|
ignore_mismatched_sizes: bool = False,
|
||
|
force_download: bool = False,
|
||
|
local_files_only: bool = False,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
revision: str = "main",
|
||
|
use_safetensors: bool = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
# Load config if we don't provide a configuration
|
||
|
if not isinstance(config, PretrainedConfig):
|
||
|
config_path = config if config is not None else pretrained_model_name_or_path
|
||
|
config, model_kwargs = cls.config_class.from_pretrained(
|
||
|
config_path,
|
||
|
cache_dir=cache_dir,
|
||
|
return_unused_kwargs=True,
|
||
|
force_download=force_download,
|
||
|
resume_download=False,
|
||
|
proxies=None,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
subfolder="",
|
||
|
_from_auto=False,
|
||
|
_from_pipeline=None,
|
||
|
**kwargs,
|
||
|
)
|
||
|
else:
|
||
|
model_kwargs = kwargs
|
||
|
|
||
|
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
|
||
|
try:
|
||
|
from .quantizer import init_model_weight_int4
|
||
|
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
|
||
|
from accelerate.utils import CustomDtype
|
||
|
from accelerate.utils import get_balanced_memory
|
||
|
except ImportError:
|
||
|
raise ImportError(f"Needs import model weight init func to run quantize.")
|
||
|
# Instantiate model.
|
||
|
init_contexts = [no_init_weights(_enable=True)]
|
||
|
init_contexts.append(init_empty_weights())
|
||
|
with ContextManagers(init_contexts):
|
||
|
model = cls(config)
|
||
|
|
||
|
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
|
||
|
state_dict = torch.load(model_file, map_location="cpu")
|
||
|
model.is_quantized = True
|
||
|
|
||
|
device_map = kwargs.pop("device_map", None)
|
||
|
torch_dtype = kwargs.pop("torch_dtype", None)
|
||
|
|
||
|
if device_map is not None:
|
||
|
kwargs = {"no_split_module_classes": model._no_split_modules}
|
||
|
target_dtype = CustomDtype.INT4
|
||
|
max_memory = get_balanced_memory(
|
||
|
model,
|
||
|
dtype=target_dtype,
|
||
|
low_zero=(device_map == "balanced_low_0"),
|
||
|
max_memory=None,
|
||
|
**kwargs,
|
||
|
)
|
||
|
kwargs["max_memory"] = max_memory
|
||
|
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
|
||
|
|
||
|
model = init_model_weight_int4(config, model, state_dict)
|
||
|
|
||
|
# Set model in evaluation mode to deactivate DropOut modules by default
|
||
|
model.eval()
|
||
|
# If it is a model with generation capabilities, attempt to load the generation config
|
||
|
if model.can_generate():
|
||
|
try:
|
||
|
model.generation_config = GenerationConfig.from_pretrained(
|
||
|
pretrained_model_name_or_path,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
resume_download=False,
|
||
|
proxies=None,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
subfolder="",
|
||
|
_from_auto=False,
|
||
|
_from_pipeline=None,
|
||
|
**kwargs,
|
||
|
)
|
||
|
except (OSError, TypeError):
|
||
|
logger.info(
|
||
|
"Generation config file not found, using a generation config created from the model config."
|
||
|
)
|
||
|
pass
|
||
|
|
||
|
if device_map is not None:
|
||
|
dispatch_model(model, device_map=device_map)
|
||
|
|
||
|
return model
|
||
|
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
|
||
|
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
|
||
|
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
|
||
|
use_safetensors=use_safetensors, **kwargs)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
|
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
|
outputs = self.model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||
|
shift_labels = shift_labels.view(-1)
|
||
|
softmax_normalizer = shift_logits.max(-1).values ** 2
|
||
|
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
|
||
|
# Enable model parallelism
|
||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||
|
loss = loss_fct(shift_logits, shift_labels) + z_loss
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||
|
):
|
||
|
if past_key_values:
|
||
|
input_ids = input_ids[:, -1:]
|
||
|
|
||
|
position_ids = kwargs.get("position_ids", None)
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if past_key_values:
|
||
|
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and past_key_values is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids}
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": kwargs.get("use_cache"),
|
||
|
"attention_mask": attention_mask,
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||
|
return reordered_past
|
||
|
|
||
|
def quantize(self, bits: int):
|
||
|
try:
|
||
|
from .quantizer import quantize_online
|
||
|
except ImportError:
|
||
|
raise ImportError(f"Needs QLinear to run quantize.")
|
||
|
return quantize_online(self, bits)
|
||
|
|
||
|
def chat(self, tokenizer, messages: List[dict], stream=False,
|
||
|
generation_config: Optional[GenerationConfig]=None):
|
||
|
generation_config = generation_config or self.generation_config
|
||
|
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
|
||
|
if stream:
|
||
|
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||
|
Thread(target=self.generate, kwargs=dict(
|
||
|
inputs=input_ids, streamer=streamer,
|
||
|
generation_config=generation_config,
|
||
|
)).start()
|
||
|
return streamer
|
||
|
else:
|
||
|
outputs = self.generate(input_ids, generation_config=generation_config)
|
||
|
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
|
||
|
return response
|