210 lines
8.9 KiB
Python
210 lines
8.9 KiB
Python
import bitsandbytes as bnb
|
|
from bitsandbytes.nn.modules import Params4bit, Int8Params
|
|
import torch
|
|
|
|
def Params4bitCuda(self, device):
|
|
self.data = self.data.cuda(device)
|
|
self.quant_state[0] = self.quant_state[0].cuda(device)
|
|
self.quant_state[4][0] = self.quant_state[4][0].cuda(device)
|
|
self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device)
|
|
self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device)
|
|
|
|
self.quant_state[6] = self.quant_state[6].cuda(device)
|
|
return self
|
|
|
|
class Linear4bitOnline(torch.nn.Module):
|
|
def __init__(self, weight, bias, quant_type):
|
|
super().__init__()
|
|
self.weight = Params4bit(
|
|
weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
|
|
)
|
|
self.compute_dtype = None
|
|
#self.weight.cuda(weight.device)
|
|
self.bias = bias
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
|
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
|
if getattr(self.weight, "quant_state", None) is None:
|
|
print(
|
|
"FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
|
|
)
|
|
inp_dtype = x.dtype
|
|
if self.compute_dtype is not None:
|
|
x = x.to(self.compute_dtype)
|
|
|
|
bias = None if self.bias is None else self.bias.to(self.compute_dtype)
|
|
out = bnb.matmul_4bit(
|
|
x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
|
|
)
|
|
|
|
out = out.to(inp_dtype)
|
|
|
|
return out
|
|
|
|
class Linear8bitLtOnline(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=True,
|
|
memory_efficient_backward=False,
|
|
threshold=0.0,
|
|
index=None,
|
|
):
|
|
super().__init__()
|
|
assert (
|
|
not memory_efficient_backward
|
|
), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
|
|
self.state = bnb.MatmulLtState()
|
|
self.index = index
|
|
|
|
# Necessary for stacked layers
|
|
self.state.threshold = threshold
|
|
self.state.has_fp16_weights = has_fp16_weights
|
|
self.state.memory_efficient_backward = memory_efficient_backward
|
|
if threshold > 0.0 and not has_fp16_weights:
|
|
self.state.use_pool = True
|
|
|
|
self.weight = Int8Params(
|
|
weight.data,
|
|
has_fp16_weights=has_fp16_weights,
|
|
requires_grad=has_fp16_weights,
|
|
)
|
|
self.bias = bias
|
|
|
|
def init_8bit_state(self):
|
|
self.state.CB = self.weight.CB
|
|
self.state.SCB = self.weight.SCB
|
|
self.weight.CB = None
|
|
self.weight.SCB = None
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
self.state.is_training = self.training
|
|
if self.weight.CB is not None:
|
|
self.init_8bit_state()
|
|
|
|
# weights are cast automatically as Int8Params, but the bias has to be cast manually
|
|
if self.bias is not None and self.bias.dtype != x.dtype:
|
|
self.bias.data = self.bias.data.to(x.dtype)
|
|
|
|
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
|
|
|
if not self.state.has_fp16_weights:
|
|
if self.state.CB is not None and self.state.CxB is not None:
|
|
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
|
# we no longer need the row-major weight
|
|
del self.state.CB
|
|
self.weight.data = self.state.CxB
|
|
return out
|
|
|
|
def quantize_offline(model, bits: int):
|
|
assert (bits == 4), f'bits: {bits} is not supported'
|
|
|
|
for i, layer in enumerate(model.model.layers):
|
|
layer.self_attn.W_pack = bnb.nn.Linear4bit(
|
|
layer.self_attn.W_pack.weight.shape[1],
|
|
layer.self_attn.W_pack.weight.shape[0],
|
|
False,
|
|
torch.float16,
|
|
compress_statistics=True,
|
|
quant_type="nf4",
|
|
)
|
|
layer.self_attn.o_proj = bnb.nn.Linear4bit(
|
|
layer.self_attn.o_proj.weight.shape[1],
|
|
layer.self_attn.o_proj.weight.shape[0],
|
|
False,
|
|
torch.float16,
|
|
compress_statistics=True,
|
|
quant_type="nf4",
|
|
)
|
|
|
|
layer.mlp.gate_proj = bnb.nn.Linear4bit(
|
|
layer.mlp.gate_proj.weight.shape[1],
|
|
layer.mlp.gate_proj.weight.shape[0],
|
|
False,
|
|
torch.float16,
|
|
compress_statistics=True,
|
|
quant_type="nf4",
|
|
)
|
|
layer.mlp.down_proj = bnb.nn.Linear4bit(
|
|
layer.mlp.down_proj.weight.shape[1],
|
|
layer.mlp.down_proj.weight.shape[0],
|
|
False,
|
|
torch.float16,
|
|
compress_statistics=True,
|
|
quant_type="nf4",
|
|
)
|
|
layer.mlp.up_proj = bnb.nn.Linear4bit(
|
|
layer.mlp.up_proj.weight.shape[1],
|
|
layer.mlp.up_proj.weight.shape[0],
|
|
False,
|
|
torch.float16,
|
|
compress_statistics=True,
|
|
quant_type="nf4",
|
|
)
|
|
return model
|
|
|
|
def quantize_online(model, bits: int):
|
|
def quant(weight, bias=None):
|
|
if bits == 8:
|
|
linear = Linear8bitLtOnline(
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=False,
|
|
threshold=6.0,
|
|
)
|
|
if bias is not None:
|
|
linear.bias = torch.nn.Parameter(bias)
|
|
elif bits == 4:
|
|
linear = Linear4bitOnline(
|
|
weight,
|
|
bias,
|
|
quant_type="nf4", #fp4/nf4
|
|
)
|
|
else:
|
|
raise ValueError("quantize only support 4/8 bit")
|
|
return linear
|
|
|
|
for i, layer in enumerate(model.model.layers):
|
|
layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight)
|
|
layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight)
|
|
layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight)
|
|
layer.mlp.down_proj = quant(layer.mlp.down_proj.weight)
|
|
layer.mlp.up_proj = quant(layer.mlp.up_proj.weight)
|
|
return model
|
|
|
|
def init_model_weight_int4(config, model, state_dict):
|
|
#replace Params4bit.cuda with Params4bitCuda
|
|
Params4bit.cuda = Params4bitCuda
|
|
|
|
for i in range(config.num_hidden_layers):
|
|
weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data']
|
|
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state']
|
|
model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
|
|
|
weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data']
|
|
weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state']
|
|
model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data']
|
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state']
|
|
model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data']
|
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state']
|
|
model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
|
|
|
weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data']
|
|
weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state']
|
|
model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
|
|
|
|
model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight']
|
|
model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight']
|
|
|
|
model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight']
|
|
model.model.norm.weight = state_dict['model.norm.weight']
|
|
model.lm_head.weight = state_dict['lm_head.weight']
|
|
return model |