1923 lines
77 KiB
Python
1923 lines
77 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" PyTorch DeepSeek model."""
|
|
import math
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_attn_mask_utils import (
|
|
AttentionMaskConverter,
|
|
_prepare_4d_attention_mask,
|
|
_prepare_4d_causal_attention_mask,
|
|
)
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
SequenceClassifierOutputWithPast,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.pytorch_utils import (
|
|
ALL_LAYERNORM_LAYERS,
|
|
is_torch_greater_or_equal_than_1_13,
|
|
)
|
|
from transformers.utils import (
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from transformers.utils.import_utils import is_torch_fx_available
|
|
from .configuration_deepseek import DeepseekV2Config
|
|
import torch.distributed as dist
|
|
import numpy as np
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
|
|
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
|
# It means that the function will not be traced through and simply appear as a node in the graph.
|
|
if is_torch_fx_available():
|
|
if not is_torch_greater_or_equal_than_1_13:
|
|
import torch.fx
|
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CONFIG_FOR_DOC = "DeepseekV2Config"
|
|
|
|
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(
|
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
|
|
)
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
class DeepseekV2RMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
DeepseekV2RMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
|
|
|
|
|
|
class DeepseekV2RotaryEmbedding(nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
inv_freq = 1.0 / (
|
|
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
|
)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
# Build here to make `torch.jit.trace` work.
|
|
self._set_cos_sin_cache(
|
|
seq_len=max_position_embeddings,
|
|
device=self.inv_freq.device,
|
|
dtype=torch.get_default_dtype(),
|
|
)
|
|
self.max_seq_len_cached = None
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(
|
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
|
)
|
|
|
|
freqs = torch.outer(t, self.inv_freq.to(t.device))
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
|
|
|
def forward(self, x, seq_len=None):
|
|
# x: [bs, num_attention_heads, seq_len, head_size]
|
|
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
|
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
|
|
|
return (
|
|
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
|
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
|
)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
|
|
class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
"""DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
max_position_embeddings=2048,
|
|
base=10000,
|
|
device=None,
|
|
scaling_factor=1.0,
|
|
):
|
|
self.scaling_factor = scaling_factor
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
t = torch.arange(
|
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
|
)
|
|
t = t / self.scaling_factor
|
|
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
|
|
class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
"""DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
max_position_embeddings=2048,
|
|
base=10000,
|
|
device=None,
|
|
scaling_factor=1.0,
|
|
):
|
|
self.scaling_factor = scaling_factor
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if seq_len > self.max_position_embeddings:
|
|
base = self.base * (
|
|
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
|
- (self.scaling_factor - 1)
|
|
) ** (self.dim / (self.dim - 2))
|
|
inv_freq = 1.0 / (
|
|
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
|
)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
t = torch.arange(
|
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
|
)
|
|
|
|
freqs = torch.outer(t, self.inv_freq)
|
|
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
|
|
|
|
|
# Inverse dim formula to find dim based on number of rotations
|
|
def yarn_find_correction_dim(
|
|
num_rotations, dim, base=10000, max_position_embeddings=2048
|
|
):
|
|
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
|
2 * math.log(base)
|
|
)
|
|
|
|
|
|
# Find dim range bounds based on rotations
|
|
def yarn_find_correction_range(
|
|
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
|
|
):
|
|
low = math.floor(
|
|
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
|
|
)
|
|
high = math.ceil(
|
|
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
|
|
)
|
|
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
|
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
|
|
def yarn_linear_ramp_mask(min, max, dim):
|
|
if min == max:
|
|
max += 0.001 # Prevent singularity
|
|
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
|
ramp_func = torch.clamp(linear_func, 0, 1)
|
|
return ramp_func
|
|
|
|
|
|
class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
max_position_embeddings=2048,
|
|
base=10000,
|
|
device=None,
|
|
scaling_factor=1.0,
|
|
original_max_position_embeddings=4096,
|
|
beta_fast=32,
|
|
beta_slow=1,
|
|
mscale=1,
|
|
mscale_all_dim=0,
|
|
):
|
|
self.scaling_factor = scaling_factor
|
|
self.original_max_position_embeddings = original_max_position_embeddings
|
|
self.beta_fast = beta_fast
|
|
self.beta_slow = beta_slow
|
|
self.mscale = mscale
|
|
self.mscale_all_dim = mscale_all_dim
|
|
super().__init__(dim, max_position_embeddings, base, device)
|
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
|
self.max_seq_len_cached = seq_len
|
|
dim = self.dim
|
|
|
|
freq_extra = 1.0 / (
|
|
self.base
|
|
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
|
)
|
|
freq_inter = 1.0 / (
|
|
self.scaling_factor
|
|
* self.base
|
|
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
|
|
)
|
|
|
|
low, high = yarn_find_correction_range(
|
|
self.beta_fast,
|
|
self.beta_slow,
|
|
dim,
|
|
self.base,
|
|
self.original_max_position_embeddings,
|
|
)
|
|
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
|
|
device=device, dtype=torch.float32
|
|
)
|
|
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
|
|
|
freqs = torch.outer(t, inv_freq)
|
|
|
|
_mscale = float(
|
|
yarn_get_mscale(self.scaling_factor, self.mscale)
|
|
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
|
|
)
|
|
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
self.register_buffer(
|
|
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
|
|
)
|
|
self.register_buffer(
|
|
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
|
|
)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`):
|
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
|
used to pass offsetted position ids when working with a KV-cache.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
|
|
|
b, h, s, d = q.shape
|
|
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
|
|
|
b, h, s, d = k.shape
|
|
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
class DeepseekV2MLP(nn.Module):
|
|
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
|
self.intermediate_size = (
|
|
config.intermediate_size if intermediate_size is None else intermediate_size
|
|
)
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, x):
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
|
return down_proj
|
|
|
|
|
|
class MoEGate(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.top_k = config.num_experts_per_tok
|
|
self.n_routed_experts = config.n_routed_experts
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
self.scoring_func = config.scoring_func
|
|
self.alpha = config.aux_loss_alpha
|
|
self.seq_aux = config.seq_aux
|
|
self.topk_method = config.topk_method
|
|
self.n_group = config.n_group
|
|
self.topk_group = config.topk_group
|
|
|
|
# topk selection algorithm
|
|
self.norm_topk_prob = config.norm_topk_prob
|
|
self.gating_dim = config.hidden_size
|
|
self.weight = nn.Parameter(
|
|
torch.empty((self.n_routed_experts, self.gating_dim))
|
|
)
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self) -> None:
|
|
import torch.nn.init as init
|
|
|
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
|
|
|
def forward(self, hidden_states):
|
|
bsz, seq_len, h = hidden_states.shape
|
|
### compute gating score
|
|
hidden_states = hidden_states.view(-1, h)
|
|
logits = F.linear(
|
|
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
|
|
)
|
|
if self.scoring_func == "softmax":
|
|
scores = logits.softmax(dim=-1, dtype=torch.float32)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"insupportable scoring function for MoE gating: {self.scoring_func}"
|
|
)
|
|
|
|
### select top-k experts
|
|
if self.topk_method == "greedy":
|
|
topk_weight, topk_idx = torch.topk(
|
|
scores, k=self.top_k, dim=-1, sorted=False
|
|
)
|
|
elif self.topk_method == "group_limited_greedy":
|
|
group_scores = (
|
|
scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
|
|
) # [n, n_group]
|
|
group_idx = torch.topk(
|
|
group_scores, k=self.topk_group, dim=-1, sorted=False
|
|
)[
|
|
1
|
|
] # [n, top_k_group]
|
|
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
|
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
|
score_mask = (
|
|
group_mask.unsqueeze(-1)
|
|
.expand(
|
|
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
|
|
)
|
|
.reshape(bsz * seq_len, -1)
|
|
) # [n, e]
|
|
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
|
topk_weight, topk_idx = torch.topk(
|
|
tmp_scores, k=self.top_k, dim=-1, sorted=False
|
|
)
|
|
|
|
### norm gate to sum 1
|
|
if self.top_k > 1 and self.norm_topk_prob:
|
|
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
|
topk_weight = topk_weight / denominator
|
|
else:
|
|
topk_weight = topk_weight * self.routed_scaling_factor
|
|
### expert-level computation auxiliary loss
|
|
if self.training and self.alpha > 0.0:
|
|
scores_for_aux = scores
|
|
aux_topk = self.top_k
|
|
# always compute aux loss based on the naive greedy topk method
|
|
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
|
if self.seq_aux:
|
|
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
|
ce = torch.zeros(
|
|
bsz, self.n_routed_experts, device=hidden_states.device
|
|
)
|
|
ce.scatter_add_(
|
|
1,
|
|
topk_idx_for_aux_loss,
|
|
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
|
|
).div_(seq_len * aux_topk / self.n_routed_experts)
|
|
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
|
|
dim=1
|
|
).mean() * self.alpha
|
|
else:
|
|
mask_ce = F.one_hot(
|
|
topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
|
|
)
|
|
ce = mask_ce.float().mean(0)
|
|
Pi = scores_for_aux.mean(0)
|
|
fi = ce * self.n_routed_experts
|
|
aux_loss = (Pi * fi).sum() * self.alpha
|
|
else:
|
|
aux_loss = None
|
|
return topk_idx, topk_weight, aux_loss
|
|
|
|
|
|
class AddAuxiliaryLoss(torch.autograd.Function):
|
|
"""
|
|
The trick function of adding auxiliary (aux) loss,
|
|
which includes the gradient of the aux loss during backpropagation.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x, loss):
|
|
assert loss.numel() == 1
|
|
ctx.dtype = loss.dtype
|
|
ctx.required_aux_loss = loss.requires_grad
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
grad_loss = None
|
|
if ctx.required_aux_loss:
|
|
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
|
return grad_output, grad_loss
|
|
|
|
|
|
class DeepseekV2MoE(nn.Module):
|
|
"""
|
|
A mixed expert module containing shared experts.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.num_experts_per_tok = config.num_experts_per_tok
|
|
|
|
if hasattr(config, "ep_size") and config.ep_size > 1:
|
|
assert config.ep_size == dist.get_world_size()
|
|
self.ep_size = config.ep_size
|
|
self.experts_per_rank = config.n_routed_experts // config.ep_size
|
|
self.ep_rank = dist.get_rank()
|
|
self.experts = nn.ModuleList(
|
|
[
|
|
(
|
|
DeepseekV2MLP(
|
|
config, intermediate_size=config.moe_intermediate_size
|
|
)
|
|
if i >= self.ep_rank * self.experts_per_rank
|
|
and i < (self.ep_rank + 1) * self.experts_per_rank
|
|
else None
|
|
)
|
|
for i in range(config.n_routed_experts)
|
|
]
|
|
)
|
|
else:
|
|
self.ep_size = 1
|
|
self.experts_per_rank = config.n_routed_experts
|
|
self.ep_rank = 0
|
|
self.experts = nn.ModuleList(
|
|
[
|
|
DeepseekV2MLP(
|
|
config, intermediate_size=config.moe_intermediate_size
|
|
)
|
|
for i in range(config.n_routed_experts)
|
|
]
|
|
)
|
|
self.gate = MoEGate(config)
|
|
if config.n_shared_experts is not None:
|
|
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
self.shared_experts = DeepseekV2MLP(
|
|
config=config, intermediate_size=intermediate_size
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
identity = hidden_states
|
|
orig_shape = hidden_states.shape
|
|
topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
|
flat_topk_idx = topk_idx.view(-1)
|
|
if self.training:
|
|
hidden_states = hidden_states.repeat_interleave(
|
|
self.num_experts_per_tok, dim=0
|
|
)
|
|
y = torch.empty_like(hidden_states)
|
|
for i, expert in enumerate(self.experts):
|
|
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
|
|
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
|
y = y.to(hidden_states.dtype).view(*orig_shape)
|
|
y = AddAuxiliaryLoss.apply(y, aux_loss)
|
|
else:
|
|
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
|
|
if self.config.n_shared_experts is not None:
|
|
y = y + self.shared_experts(identity)
|
|
return y
|
|
|
|
@torch.no_grad()
|
|
def moe_infer(self, x, topk_ids, topk_weight):
|
|
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
|
|
cnts.scatter_(1, topk_ids, 1)
|
|
tokens_per_expert = cnts.sum(dim=0)
|
|
idxs = topk_ids.view(-1).argsort()
|
|
sorted_tokens = x[idxs // topk_ids.shape[1]]
|
|
sorted_tokens_shape = sorted_tokens.shape
|
|
if self.ep_size > 1:
|
|
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
|
|
tokens_per_expert_group = tokens_per_expert.new_empty(
|
|
tokens_per_expert.shape[0]
|
|
)
|
|
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
|
|
output_splits = (
|
|
tokens_per_expert_group.view(self.ep_size, -1)
|
|
.sum(1)
|
|
.cpu()
|
|
.numpy()
|
|
.tolist()
|
|
)
|
|
gathered_tokens = sorted_tokens.new_empty(
|
|
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
|
|
)
|
|
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
|
|
dist.all_to_all(
|
|
list(gathered_tokens.split(output_splits)),
|
|
list(sorted_tokens.split(input_split_sizes)),
|
|
)
|
|
tokens_per_expert_post_gather = tokens_per_expert_group.view(
|
|
self.ep_size, self.experts_per_rank
|
|
).sum(dim=0)
|
|
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
|
|
s = 0
|
|
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
|
|
gatherd_idxs[s : s + k] = i % self.experts_per_rank
|
|
s += k
|
|
gatherd_idxs = gatherd_idxs.argsort()
|
|
sorted_tokens = gathered_tokens[gatherd_idxs]
|
|
tokens_per_expert = tokens_per_expert_post_gather
|
|
tokens_per_expert = tokens_per_expert.cpu().numpy()
|
|
|
|
outputs = []
|
|
start_idx = 0
|
|
for i, num_tokens in enumerate(tokens_per_expert):
|
|
end_idx = start_idx + num_tokens
|
|
if num_tokens == 0:
|
|
continue
|
|
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
|
|
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
|
|
expert_out = expert(tokens_for_this_expert)
|
|
outputs.append(expert_out)
|
|
start_idx = end_idx
|
|
|
|
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
|
|
if self.ep_size > 1:
|
|
new_x = torch.empty_like(outs)
|
|
new_x[gatherd_idxs] = outs
|
|
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
|
|
dist.all_to_all(
|
|
list(gathered_tokens.split(input_split_sizes)),
|
|
list(new_x.split(output_splits)),
|
|
)
|
|
outs = gathered_tokens
|
|
|
|
new_x = torch.empty_like(outs)
|
|
new_x[idxs] = outs
|
|
final_out = (
|
|
new_x.view(*topk_ids.shape, -1)
|
|
.type(topk_weight.dtype)
|
|
.mul_(topk_weight.unsqueeze(dim=-1))
|
|
.sum(dim=1)
|
|
.type(new_x.dtype)
|
|
)
|
|
return final_out
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(
|
|
batch, num_key_value_heads, n_rep, slen, head_dim
|
|
)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
|
|
class DeepseekV2Attention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
|
"when creating this class."
|
|
)
|
|
|
|
self.attention_dropout = config.attention_dropout
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.q_lora_rank = config.q_lora_rank
|
|
self.qk_rope_head_dim = config.qk_rope_head_dim
|
|
self.kv_lora_rank = config.kv_lora_rank
|
|
self.v_head_dim = config.v_head_dim
|
|
self.qk_nope_head_dim = config.qk_nope_head_dim
|
|
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
|
|
|
|
self.is_causal = True
|
|
|
|
if self.q_lora_rank is None:
|
|
self.q_proj = nn.Linear(
|
|
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
|
|
)
|
|
else:
|
|
self.q_a_proj = nn.Linear(
|
|
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
|
|
)
|
|
self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
|
|
self.q_b_proj = nn.Linear(
|
|
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
|
|
)
|
|
|
|
self.kv_a_proj_with_mqa = nn.Linear(
|
|
self.hidden_size,
|
|
config.kv_lora_rank + config.qk_rope_head_dim,
|
|
bias=config.attention_bias,
|
|
)
|
|
self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
|
|
self.kv_b_proj = nn.Linear(
|
|
config.kv_lora_rank,
|
|
self.num_heads
|
|
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
|
|
bias=False,
|
|
)
|
|
|
|
self.o_proj = nn.Linear(
|
|
self.num_heads * self.v_head_dim,
|
|
self.hidden_size,
|
|
bias=config.attention_bias,
|
|
)
|
|
self._init_rope()
|
|
|
|
self.softmax_scale = self.q_head_dim ** (-0.5)
|
|
if self.config.rope_scaling is not None:
|
|
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
|
|
scaling_factor = self.config.rope_scaling["factor"]
|
|
if mscale_all_dim:
|
|
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
|
self.softmax_scale = self.softmax_scale * mscale * mscale
|
|
|
|
def _init_rope(self):
|
|
if self.config.rope_scaling is None:
|
|
self.rotary_emb = DeepseekV2RotaryEmbedding(
|
|
self.qk_rope_head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
)
|
|
else:
|
|
scaling_type = self.config.rope_scaling["type"]
|
|
scaling_factor = self.config.rope_scaling["factor"]
|
|
if scaling_type == "linear":
|
|
self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
|
|
self.qk_rope_head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
scaling_factor=scaling_factor,
|
|
base=self.rope_theta,
|
|
)
|
|
elif scaling_type == "dynamic":
|
|
self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
|
|
self.qk_rope_head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
scaling_factor=scaling_factor,
|
|
base=self.rope_theta,
|
|
)
|
|
elif scaling_type == "yarn":
|
|
kwargs = {
|
|
key: self.config.rope_scaling[key]
|
|
for key in [
|
|
"original_max_position_embeddings",
|
|
"beta_fast",
|
|
"beta_slow",
|
|
"mscale",
|
|
"mscale_all_dim",
|
|
]
|
|
if key in self.config.rope_scaling
|
|
}
|
|
self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
|
|
self.qk_rope_head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
scaling_factor=scaling_factor,
|
|
base=self.rope_theta,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return (
|
|
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
|
|
.transpose(1, 2)
|
|
.contiguous()
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
if self.q_lora_rank is None:
|
|
q = self.q_proj(hidden_states)
|
|
else:
|
|
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
|
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
|
q_nope, q_pe = torch.split(
|
|
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
|
)
|
|
|
|
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
|
compressed_kv, k_pe = torch.split(
|
|
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
|
)
|
|
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
|
kv = (
|
|
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
|
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
.transpose(1, 2)
|
|
)
|
|
|
|
k_nope, value_states = torch.split(
|
|
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
|
)
|
|
kv_seq_len = value_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
"with a layer index."
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
|
|
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
|
|
|
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
|
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
|
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
|
|
|
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
|
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
|
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx, cache_kwargs
|
|
)
|
|
|
|
attn_weights = (
|
|
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
|
|
)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
assert attention_mask is not None
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
# upcast attention to fp32
|
|
attn_weights = nn.functional.softmax(
|
|
attn_weights, dim=-1, dtype=torch.float32
|
|
).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(
|
|
attn_weights, p=self.attention_dropout, training=self.training
|
|
)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
|
|
class DeepseekV2FlashAttention2(DeepseekV2Attention):
|
|
"""
|
|
DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
|
flash attention and deal with padding tokens in case the input contains any of them.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
|
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
|
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
# DeepseekV2FlashAttention2 attention does not support output_attentions
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
|
|
# overwrite attention_mask with padding_mask
|
|
attention_mask = kwargs.pop("padding_mask")
|
|
|
|
output_attentions = False
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
if self.q_lora_rank is None:
|
|
q = self.q_proj(hidden_states)
|
|
else:
|
|
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
|
|
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
|
|
q_nope, q_pe = torch.split(
|
|
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
|
)
|
|
|
|
# Flash attention requires the input to have the shape
|
|
# batch_size x seq_length x head_dim x hidden_dim
|
|
# therefore we just need to keep the original shape
|
|
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
|
compressed_kv, k_pe = torch.split(
|
|
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
|
)
|
|
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
|
|
kv = (
|
|
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
|
|
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
.transpose(1, 2)
|
|
)
|
|
|
|
k_nope, value_states = torch.split(
|
|
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
|
|
)
|
|
kv_seq_len = value_states.shape[-2]
|
|
|
|
kv_seq_len = value_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
|
|
|
|
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
|
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
|
|
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
|
|
|
|
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
|
|
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
|
|
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
|
|
|
|
if self.q_head_dim != self.v_head_dim:
|
|
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(
|
|
key_states, value_states, self.layer_idx, cache_kwargs
|
|
)
|
|
|
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
|
# to be able to avoid many of these transpose/reshape/view.
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (DeepseekV2RMSNorm handles it correctly)
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
# Handle the case where the model is quantized
|
|
if hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
elif torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
else:
|
|
target_dtype = (
|
|
self.q_proj.weight.dtype
|
|
if self.q_lora_rank is None
|
|
else self.q_a_proj.weight.dtype
|
|
)
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
|
|
attn_output = self._flash_attention_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
q_len,
|
|
dropout=dropout_rate,
|
|
softmax_scale=self.softmax_scale,
|
|
)
|
|
if self.q_head_dim != self.v_head_dim:
|
|
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
|
|
|
attn_output = attn_output.reshape(
|
|
bsz, q_len, self.num_heads * self.v_head_dim
|
|
).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
def _flash_attention_forward(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
query_length,
|
|
dropout=0.0,
|
|
softmax_scale=None,
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`int`, *optional*):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
|
|
causal = self.is_causal and query_length != 1
|
|
|
|
# Contains at least one padding token in the sequence
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
indices_q,
|
|
cu_seq_lens,
|
|
max_seq_lens,
|
|
) = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
|
|
attn_output = pad_input(
|
|
attn_output_unpad, indices_q, batch_size, query_length
|
|
)
|
|
else:
|
|
attn_output = flash_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def _upad_input(
|
|
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
|
):
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
|
|
|
key_layer = index_first_axis(
|
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
value_layer = index_first_axis(
|
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
|
|
indices_k,
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
) # There is a memcpy here, that is very bad.
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
# The -q_len: slice assumes left padding.
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
|
query_layer, attention_mask
|
|
)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
|
|
ATTENTION_CLASSES = {
|
|
"eager": DeepseekV2Attention,
|
|
"flash_attention_2": DeepseekV2FlashAttention2,
|
|
}
|
|
|
|
|
|
class DeepseekV2DecoderLayer(nn.Module):
|
|
def __init__(self, config: DeepseekV2Config, layer_idx: int):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
|
|
config=config, layer_idx=layer_idx
|
|
)
|
|
|
|
self.mlp = (
|
|
DeepseekV2MoE(config)
|
|
if (
|
|
config.n_routed_experts is not None
|
|
and layer_idx >= config.first_k_dense_replace
|
|
and layer_idx % config.moe_layer_freq == 0
|
|
)
|
|
else DeepseekV2MLP(config)
|
|
)
|
|
self.input_layernorm = DeepseekV2RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.post_attention_layernorm = DeepseekV2RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> Tuple[
|
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
|
]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*):
|
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
|
query_sequence_length, key_sequence_length)` if default attention is used.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
"""
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
# Self Attention
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
**kwargs,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
DeepseekV2_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`DeepseekV2Config`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
|
DeepseekV2_START_DOCSTRING,
|
|
)
|
|
class DeepseekV2PreTrainedModel(PreTrainedModel):
|
|
config_class = DeepseekV2Config
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["DeepseekV2DecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
_supports_cache_class = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
DeepseekV2_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
|
|
DeepseekV2_START_DOCSTRING,
|
|
)
|
|
class DeepseekV2Model(DeepseekV2PreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
|
|
|
|
Args:
|
|
config: DeepseekV2Config
|
|
"""
|
|
|
|
def __init__(self, config: DeepseekV2Config):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(
|
|
config.vocab_size, config.hidden_size, self.padding_idx
|
|
)
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
DeepseekV2DecoderLayer(config, layer_idx)
|
|
for layer_idx in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
|
self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError(
|
|
"You cannot specify both input_ids and inputs_embeds at the same time"
|
|
)
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape[:2]
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length = inputs_embeds.shape[:2]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
|
)
|
|
use_cache = False
|
|
|
|
past_key_values_length = 0
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if self._use_flash_attention_2:
|
|
# 2d mask is passed through the layers
|
|
attention_mask = (
|
|
attention_mask
|
|
if (attention_mask is not None and 0 in attention_mask)
|
|
else None
|
|
)
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
)
|
|
|
|
# embed positions
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = (
|
|
next_decoder_cache.to_legacy_cache()
|
|
if use_legacy_cache
|
|
else next_decoder_cache
|
|
)
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
|
if v is not None
|
|
)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|
|
class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = DeepseekV2Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(
|
|
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
|
|
|
|
>>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids,
|
|
past_key_values=None,
|
|
attention_mask=None,
|
|
inputs_embeds=None,
|
|
**kwargs,
|
|
):
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
max_cache_length = past_key_values.get_max_length()
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
max_cache_length = None
|
|
|
|
# Keep only the unprocessed tokens:
|
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
|
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
|
# input)
|
|
if (
|
|
attention_mask is not None
|
|
and attention_mask.shape[1] > input_ids.shape[1]
|
|
):
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
|
# input_ids based on the past_length.
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
|
|
|
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
# create position_ids on the fly for batch generation
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(
|
|
past_state.index_select(0, beam_idx.to(past_state.device))
|
|
for past_state in layer_past
|
|
),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
DeepseekV2_START_DOCSTRING,
|
|
)
|
|
class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = DeepseekV2Model(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
# Initialize weights and apply final processing
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError(
|
|
"Cannot handle batch sizes > 1 if no padding token is defined."
|
|
)
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
sequence_lengths = (
|
|
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
).to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[
|
|
torch.arange(batch_size, device=logits.device), sequence_lengths
|
|
]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (
|
|
labels.dtype == torch.long or labels.dtype == torch.int
|
|
):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(
|
|
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
|
)
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|