226 lines
8.5 KiB
Python
226 lines
8.5 KiB
Python
|
from einops import rearrange, repeat
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
from PIL import Image, ImageFile
|
||
|
import random
|
||
|
from torchvision.ops.boxes import box_area
|
||
|
|
||
|
from torchvision.transforms.transforms import InterpolationMode
|
||
|
from torchvision.transforms import functional as F
|
||
|
import numpy as np
|
||
|
from icecream import ic
|
||
|
import re
|
||
|
|
||
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||
|
ImageFile.MAX_IMAGE_PIXELS = None
|
||
|
Image.MAX_IMAGE_PIXELS = None
|
||
|
|
||
|
from .constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
||
|
|
||
|
def box_iou(boxes1, area1, boxes2, eps=1e-5):
|
||
|
area2 = box_area(boxes2)
|
||
|
|
||
|
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
||
|
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
||
|
|
||
|
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
||
|
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
||
|
|
||
|
union = area1[:, None] + area2 - inter
|
||
|
|
||
|
iou = inter / (union+eps)
|
||
|
return iou, union
|
||
|
|
||
|
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
|
||
|
# anchors x1 y1 x2 y2
|
||
|
|
||
|
# image_size: (h, w)
|
||
|
# xyxy
|
||
|
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
|
||
|
|
||
|
boxes1 = anchors
|
||
|
boxes2 = input_image_bbox
|
||
|
boxes3 = anchors.clone()
|
||
|
# y2
|
||
|
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
|
||
|
|
||
|
area1 = anchors_areas
|
||
|
|
||
|
iou, _ = box_iou(boxes1, area1, boxes2)
|
||
|
iou = iou.squeeze(1)
|
||
|
shape_iou, _ = box_iou(boxes1, area1, boxes3)
|
||
|
shape_iou = shape_iou.diag()
|
||
|
# 优先匹配形状接近 再匹配分辨率接近
|
||
|
index = torch.argmax(shape_iou*100+iou,dim=0)
|
||
|
return index
|
||
|
|
||
|
class AnchorResize(torch.nn.Module):
|
||
|
|
||
|
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
|
||
|
super().__init__()
|
||
|
# xyxy
|
||
|
self.anchors = torch.tensor(
|
||
|
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
|
||
|
for _ in anchors], requires_grad=False
|
||
|
)
|
||
|
|
||
|
self.anchor_areas = box_area(self.anchors)
|
||
|
|
||
|
self.interpolation = interpolation
|
||
|
self.antialias = antialias
|
||
|
|
||
|
def forward(self, img, skip_resize=False):
|
||
|
"""
|
||
|
Args:
|
||
|
img (PIL Image or Tensor): Image to be scaled.
|
||
|
|
||
|
Returns:
|
||
|
PIL Image or Tensor: Rescaled image.
|
||
|
"""
|
||
|
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
|
||
|
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
|
||
|
if skip_resize:
|
||
|
# for debug
|
||
|
return selected_anchor
|
||
|
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
|
||
|
return f"{self.__class__.__name__}{detail}"
|
||
|
|
||
|
|
||
|
class DocProcessor():
|
||
|
def __init__(self, tokenizer=None, image_size=504, anchors='grid_12'):
|
||
|
self.media_token= "<|image|>"
|
||
|
# h,w
|
||
|
if isinstance(image_size, int):
|
||
|
image_size = (image_size, image_size)
|
||
|
self.image_size = image_size
|
||
|
# h,w
|
||
|
# anchors = grid_dict[anchors]
|
||
|
max_crop = int(anchors.split('_')[1])
|
||
|
anchors = [(j, int(i/j)) for i in range(1,max_crop+1) for j in range(1, i+1) if i%j==0]
|
||
|
self.anchors = [tuple(_) for _ in anchors]
|
||
|
self.anchor_max = max([max(_) for _ in self.anchors])
|
||
|
# xywh -> xyxy
|
||
|
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
|
||
|
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
|
||
|
self.image_transform = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
||
|
])
|
||
|
self.tokenizer = tokenizer
|
||
|
|
||
|
def _process_image(self, images):
|
||
|
new_images = []
|
||
|
new_patch_position = []
|
||
|
num_image_mult = []
|
||
|
for image in images:
|
||
|
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
|
||
|
|
||
|
image, selected_anchor = self.resizer(image)
|
||
|
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
|
||
|
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
|
||
|
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
|
||
|
|
||
|
image_input = torch.cat([nocut_image, image_input], dim=0)
|
||
|
|
||
|
anchor = self.anchors[selected_anchor] # w,h
|
||
|
patch_position = torch.cat([
|
||
|
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
|
||
|
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
|
||
|
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)
|
||
|
|
||
|
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)
|
||
|
|
||
|
new_images.append(image_input)
|
||
|
new_patch_position.append(patch_position)
|
||
|
num_image_mult.append(patch_position.shape[0])
|
||
|
|
||
|
new_images = torch.cat(new_images,dim=0)
|
||
|
new_patch_position = torch.cat(new_patch_position, dim=0)
|
||
|
return new_images, new_patch_position, num_image_mult
|
||
|
|
||
|
def __call__(self, images=None, messages=None):
|
||
|
assert images is not None
|
||
|
# print(images)
|
||
|
|
||
|
## 1. process images
|
||
|
if not isinstance(images, list):
|
||
|
images = [images]
|
||
|
image_pils = []
|
||
|
for image in images:
|
||
|
if isinstance(image, str):
|
||
|
image = Image.open(image).convert('RGB')
|
||
|
else:
|
||
|
|
||
|
image = image.convert('RGB')
|
||
|
# ic(image.size)
|
||
|
image_pils.append(image)
|
||
|
|
||
|
image_data, patch_position, num_image_mult = self._process_image(image_pils)
|
||
|
|
||
|
## 2. process text
|
||
|
# 2.1 add image ordinal token (e.g. <img 1>) before image placeholder <|image|>
|
||
|
image_index = 1 # start from 1
|
||
|
for m in messages:
|
||
|
try:
|
||
|
assert m['role'] in ['USER', 'ASSISTANT']
|
||
|
except Exception as e:
|
||
|
print("Unexpected role: "+m['role']+", only support 'USER' or 'ASSISTANT'")
|
||
|
exit(0)
|
||
|
|
||
|
if m['role'] == 'USER' and self.media_token in m.get('content', ''):
|
||
|
pattern = '|'.join(map(re.escape, [self.media_token]))
|
||
|
text_list = re.split(f'({pattern})', m['content'])
|
||
|
text = ''
|
||
|
for x in text_list:
|
||
|
if x == '<|image|>':
|
||
|
text += '<img '+str(image_index)+'><|image|>'
|
||
|
image_index += 1
|
||
|
else:
|
||
|
text += x
|
||
|
m['content'] = text
|
||
|
|
||
|
if messages[-1]['role'] == 'USER':
|
||
|
messages.append({'role':'ASSISTANT'})
|
||
|
else:
|
||
|
try:
|
||
|
assert messages[-1].get('content', '') == ''
|
||
|
except Exception as e:
|
||
|
print("Unexpected end message: "+str(messages[-1]), "only (role=='USER') or (role=='ASSISTANT' and content=='') are expected.")
|
||
|
exit(0)
|
||
|
|
||
|
# print('after adding img ordinal token: ', messages)
|
||
|
# 2.2 text tokenize
|
||
|
seps = [' ', '</s>']
|
||
|
prompt = ""
|
||
|
for i, m in enumerate(messages):
|
||
|
if 'content' in m:
|
||
|
prompt += m['role'] + ": " + m['content'] + seps[i % 2]
|
||
|
else:
|
||
|
prompt += m['role'] + ":"
|
||
|
ic(prompt)
|
||
|
assert self.media_token in prompt
|
||
|
input_ids = self.tokenizer_token(prompt)
|
||
|
|
||
|
return image_data, patch_position, input_ids
|
||
|
|
||
|
|
||
|
def tokenizer_token(self, prompt):
|
||
|
prompt_chunks = [self.tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)]
|
||
|
|
||
|
def insert_separator(X, sep):
|
||
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
||
|
|
||
|
input_ids = []
|
||
|
offset = 0
|
||
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == self.tokenizer.bos_token_id:
|
||
|
offset = 1
|
||
|
input_ids.append(prompt_chunks[0][0])
|
||
|
|
||
|
for x in insert_separator(prompt_chunks, [IMAGE_TOKEN_INDEX] * (offset + 1)):
|
||
|
input_ids.extend(x[offset:])
|
||
|
|
||
|
return torch.tensor(input_ids, dtype=torch.long)
|
||
|
|