502 lines
20 KiB
Python
502 lines
20 KiB
Python
import math
|
|
from typing import Any, Optional, Tuple, Union
|
|
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, BaseModelOutputWithPastAndCrossAttentions
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint
|
|
from icecream import ic
|
|
import einops
|
|
from einops import rearrange
|
|
|
|
def get_abs_pos(abs_pos, tgt_size):
|
|
# abs_pos: L, C
|
|
# tgt_size: M
|
|
# return: M, C
|
|
src_size = int(math.sqrt(abs_pos.size(0)))
|
|
tgt_size = int(math.sqrt(tgt_size))
|
|
dtype = abs_pos.dtype
|
|
|
|
if src_size != tgt_size:
|
|
return F.interpolate(
|
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
|
size=(tgt_size, tgt_size),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
|
else:
|
|
return abs_pos
|
|
|
|
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
|
"""
|
|
grid_size: int of the grid height and width
|
|
return:
|
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
|
"""
|
|
grid_h = np.arange(grid_size, dtype=np.float32)
|
|
grid_w = np.arange(grid_size, dtype=np.float32)
|
|
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
|
grid = np.stack(grid, axis=0)
|
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size])
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
|
if cls_token:
|
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
|
return pos_embed
|
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
|
assert embed_dim % 2 == 0
|
|
|
|
# use half of dimensions to encode grid_h
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
|
return emb
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
"""
|
|
embed_dim: output dimension for each position
|
|
pos: a list of positions to be encoded: size (M,)
|
|
out: (M, D)
|
|
"""
|
|
assert embed_dim % 2 == 0
|
|
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
|
omega /= embed_dim / 2.
|
|
omega = 1. / 10000**omega # (D/2,)
|
|
|
|
pos = pos.reshape(-1) # (M,)
|
|
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
|
|
|
emb_sin = np.sin(out) # (M, D/2)
|
|
emb_cos = np.cos(out) # (M, D/2)
|
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
|
return emb
|
|
|
|
|
|
|
|
class MplugOwlVisionEmbeddings(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, self.hidden_size))
|
|
|
|
self.patch_embed = nn.Conv2d(
|
|
in_channels=3,
|
|
out_channels=self.hidden_size,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
bias=False,
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
|
|
self.position_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, self.hidden_size))
|
|
|
|
self.pre_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
|
batch_size = pixel_values.size(0)
|
|
image_embeds = self.patch_embed(pixel_values)
|
|
image_embeds = image_embeds.flatten(2).transpose(1, 2)
|
|
|
|
class_embeds = self.cls_token.expand(batch_size, 1, -1).to(image_embeds.dtype)
|
|
embeddings = torch.cat([class_embeds, image_embeds], dim=1)
|
|
embeddings = embeddings + self.position_embedding[:, : embeddings.size(1)].to(image_embeds.dtype)
|
|
embeddings = self.pre_layernorm(embeddings)
|
|
return embeddings
|
|
|
|
|
|
|
|
class MplugOwlVisionAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
if self.head_dim * self.num_heads != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = nn.Dropout(config.attention_dropout)
|
|
|
|
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size)
|
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
bsz, seq_len, embed_dim = hidden_states.size()
|
|
|
|
mixed_qkv = self.query_key_value(hidden_states)
|
|
|
|
mixed_qkv = mixed_qkv.reshape(bsz, seq_len, self.num_heads, 3, embed_dim // self.num_heads).permute(
|
|
3, 0, 2, 1, 4
|
|
) # [3, b, np, sq, hn]
|
|
query_states, key_states, value_states = (
|
|
mixed_qkv[0],
|
|
mixed_qkv[1],
|
|
mixed_qkv[2],
|
|
)
|
|
# if self.config.use_flash_attn and flash_attn_func is not None:
|
|
if False:
|
|
# [b*sq, np, hn]
|
|
query_states = query_states.permute(0, 2, 1, 3).contiguous()
|
|
query_states = query_states.view(query_states.size(0) * query_states.size(1), query_states.size(2), -1)
|
|
|
|
key_states = key_states.permute(0, 2, 1, 3).contiguous()
|
|
key_states = key_states.view(key_states.size(0) * key_states.size(1), key_states.size(2), -1)
|
|
|
|
value_states = value_states.permute(0, 2, 1, 3).contiguous()
|
|
value_states = value_states.view(value_states.size(0) * value_states.size(1), value_states.size(2), -1)
|
|
|
|
cu_seqlens = torch.arange(
|
|
0, (bsz + 1) * seq_len, step=seq_len, dtype=torch.int32, device=query_states.device
|
|
)
|
|
|
|
context_layer = flash_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens,
|
|
cu_seqlens,
|
|
seq_len,
|
|
seq_len,
|
|
self.dropout if self.training else 0.0,
|
|
softmax_scale=self.scale,
|
|
causal=False,
|
|
return_attn_probs=False,
|
|
)
|
|
# [b*sq, np, hn] => [b, sq, np, hn]
|
|
context_layer = context_layer.view(bsz, seq_len, context_layer.size(1), context_layer.size(2))
|
|
else:
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
|
|
|
attention_scores = attention_scores * self.scale
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs = torch.softmax(attention_scores, dim=-1)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
|
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
|
|
context_layer = context_layer.reshape(new_context_layer_shape)
|
|
|
|
output = self.dense(context_layer)
|
|
|
|
outputs = (output, attention_probs) if output_attentions else (output, None)
|
|
|
|
return outputs
|
|
|
|
|
|
class QuickGELU(nn.Module):
|
|
def forward(self, x: torch.Tensor):
|
|
return x * torch.sigmoid(1.702 * x)
|
|
|
|
|
|
class MplugOwlMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = QuickGELU()
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class MplugOwlVisionEncoderLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.self_attn = MplugOwlVisionAttention(config)
|
|
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
self.mlp = MplugOwlMLP(config)
|
|
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
`(config.encoder_attention_heads,)`.
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
hidden_states, attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
head_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = hidden_states + residual
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
hidden_states = hidden_states + residual
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class MplugOwlVisionEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`MplugOwlVisionEncoderLayer`].
|
|
|
|
Args:
|
|
config (`MplugOwlVisionConfig`):
|
|
The corresponding vision configuration for the `MplugOwlEncoder`.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList([MplugOwlVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = True
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Embedded representation of the inputs. Should be float, not int tokens.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
hidden_states = inputs_embeds
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs, output_attentions)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(encoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
|
)
|
|
|
|
|
|
class MplugOwlVisionModel(PreTrainedModel):
|
|
main_input_name = "pixel_values"
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.embeddings = MplugOwlVisionEmbeddings(config)
|
|
self.encoder = MplugOwlVisionEncoder(config)
|
|
self.post_layernorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
|
|
self.post_init()
|
|
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if pixel_values is None:
|
|
raise ValueError("You have to specify pixel_values")
|
|
|
|
hidden_states = self.embeddings(pixel_values)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
last_hidden_state = encoder_outputs[0]
|
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
|
|
|
pooled_output = last_hidden_state[:, 0, :]
|
|
pooled_output = self.post_layernorm(pooled_output)
|
|
|
|
if not return_dict:
|
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embeddings
|
|
|
|
|
|
class MplugDocOwlHReducerModel(PreTrainedModel):
|
|
def __init__(self, config, language_hidden_size):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.ln_q = torch.nn.LayerNorm(self.config.hidden_size, eps=1e-6)
|
|
self.conv_shape = (int(self.config.conv_shape.split('x')[0]), int(self.config.conv_shape.split('x')[1])) #
|
|
self.conv_patch=self.conv_shape[0]*self.conv_shape[1]
|
|
## feature interaction with a conv layer
|
|
self.reducer_before = torch.nn.Sequential(
|
|
nn.Conv2d(self.config.hidden_size, self.conv_patch*self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True),
|
|
nn.GELU()
|
|
)
|
|
## reduce visual feature length with a conv layer
|
|
self.reducer = nn.Conv2d(self.config.hidden_size, self.config.hidden_size, kernel_size=self.conv_shape, stride=self.conv_shape, bias=True)
|
|
## align visual features with language embedding with fc
|
|
self.visual_fc = torch.nn.Linear(self.config.hidden_size, language_hidden_size)
|
|
self.vit_eos = torch.nn.Parameter(torch.randn(1, 1, language_hidden_size))
|
|
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
encoder_hidden_states=None
|
|
):
|
|
r"""
|
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, `optional`):
|
|
batch_size is the number of all images (global+crop) in a batch
|
|
Sequence of hidden-states at the output of the last layer of the encoder.
|
|
"""
|
|
encoder_hidden_states = encoder_hidden_states[:,1:,:] # remove the first cls token
|
|
B, L, C = encoder_hidden_states.shape # B, 1024=(448/14)^2, 1024
|
|
|
|
## feature interaction with a conv layer
|
|
encoder_hidden_states = rearrange(encoder_hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L)))
|
|
hidden_states = self.reducer_before(encoder_hidden_states) # B 4D H W/4
|
|
## reduce seq length with a conv layer
|
|
"""hidden_states = hidden_states.flatten(2).transpose(1, 2) # B 4D H W/4 -> B 4D H*W/4 -> B H*W/4 4D
|
|
hidden_states = rearrange(hidden_states, 'B L (X D) -> B (L X) D', X=self.conv_patch) # B (H W) D
|
|
hidden_states = rearrange(hidden_states, 'B (H W) D -> B D H W', H=int(math.sqrt(L))) # B D H W """
|
|
hidden_states = rearrange(hidden_states, 'B (X D) H W -> B D H (W X)', X=self.conv_patch) # B 4D H W/4 -> B D H W
|
|
sequence_output = self.reducer(hidden_states) # B,C,H,W -> B,C,H/conv_shape[1],W/(conv_shape[1])
|
|
sequence_output = sequence_output.flatten(2).transpose(1, 2) # B,C,H/conv_shape[1],W/(conv_shape[1]) -> B,C,L/conv_patch -> B,L/conv_patch,C
|
|
sequence_output = sequence_output.transpose(0, 1).contiguous() # L/conv_patch, B, C
|
|
## align visual features with language embedding with fc
|
|
sequence_output = self.visual_fc(sequence_output) # L/conv_patch, B, h
|
|
sequence_output = sequence_output.transpose(0, 1).contiguous() # B, s/4, h
|
|
sequence_output = torch.cat([sequence_output, self.vit_eos.repeat(B, 1, 1)], dim=1)
|
|
|
|
return sequence_output
|
|
|
|
|
|
|