881 lines
33 KiB
Python
881 lines
33 KiB
Python
|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
from transformers.cache_utils import Cache
|
||
|
import requests
|
||
|
from PIL import Image
|
||
|
from io import BytesIO
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
from .got_vision_b import build_GOT_vit_b
|
||
|
from torchvision import transforms
|
||
|
from torchvision.transforms.functional import InterpolationMode
|
||
|
import dataclasses
|
||
|
###
|
||
|
|
||
|
DEFAULT_IMAGE_TOKEN = "<image>"
|
||
|
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
||
|
DEFAULT_IM_START_TOKEN = '<img>'
|
||
|
DEFAULT_IM_END_TOKEN = '</img>'
|
||
|
|
||
|
from enum import auto, Enum
|
||
|
class SeparatorStyle(Enum):
|
||
|
"""Different separator style."""
|
||
|
SINGLE = auto()
|
||
|
TWO = auto()
|
||
|
MPT = auto()
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class Conversation:
|
||
|
"""A class that keeps all conversation history."""
|
||
|
system: str
|
||
|
roles: List[str]
|
||
|
messages: List[List[str]]
|
||
|
offset: int
|
||
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
||
|
sep: str = "<|im_end|>"
|
||
|
sep2: str = None
|
||
|
version: str = "Unknown"
|
||
|
|
||
|
skip_next: bool = False
|
||
|
|
||
|
def get_prompt(self):
|
||
|
if self.sep_style == SeparatorStyle.SINGLE:
|
||
|
ret = self.system + self.sep + '\n'
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
if type(message) is tuple:
|
||
|
message, _, _ = message
|
||
|
ret += role + ": " + message + self.sep
|
||
|
else:
|
||
|
ret += role + ":"
|
||
|
return ret
|
||
|
elif self.sep_style == SeparatorStyle.TWO:
|
||
|
seps = [self.sep, self.sep2]
|
||
|
ret = self.system + seps[0]
|
||
|
for i, (role, message) in enumerate(self.messages):
|
||
|
if message:
|
||
|
if type(message) is tuple:
|
||
|
message, _, _ = message
|
||
|
ret += role + ": " + message + seps[i % 2]
|
||
|
else:
|
||
|
ret += role + ":"
|
||
|
return ret
|
||
|
if self.sep_style == SeparatorStyle.MPT:
|
||
|
if self.system:
|
||
|
ret = self.system + self.sep
|
||
|
else:
|
||
|
ret = ''
|
||
|
for role, message in self.messages:
|
||
|
if message:
|
||
|
if type(message) is tuple:
|
||
|
message, _, _ = message
|
||
|
ret += role + message + self.sep
|
||
|
else:
|
||
|
ret += role
|
||
|
return ret
|
||
|
else:
|
||
|
raise ValueError(f"Invalid style: {self.sep_style}")
|
||
|
|
||
|
|
||
|
def append_message(self, role, message):
|
||
|
self.messages.append([role, message])
|
||
|
|
||
|
def copy(self):
|
||
|
return Conversation(
|
||
|
system=self.system,
|
||
|
roles=self.roles,
|
||
|
messages=[[x, y] for x, y in self.messages],
|
||
|
offset=self.offset,
|
||
|
sep_style=self.sep_style,
|
||
|
sep=self.sep,
|
||
|
sep2=self.sep2)
|
||
|
|
||
|
|
||
|
|
||
|
class KeywordsStoppingCriteria(StoppingCriteria):
|
||
|
def __init__(self, keywords, tokenizer, input_ids):
|
||
|
self.keywords = keywords
|
||
|
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
||
|
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
||
|
self.tokenizer = tokenizer
|
||
|
self.start_len = None
|
||
|
self.input_ids = input_ids
|
||
|
|
||
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||
|
if self.start_len is None:
|
||
|
self.start_len = self.input_ids.shape[1]
|
||
|
else:
|
||
|
for keyword_id in self.keyword_ids:
|
||
|
if output_ids[0, -1] == keyword_id:
|
||
|
return True
|
||
|
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||
|
for keyword in self.keywords:
|
||
|
if keyword in outputs:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
class GOTImageEvalProcessor:
|
||
|
def __init__(self, image_size=384, mean=None, std=None):
|
||
|
if mean is None:
|
||
|
mean = (0.48145466, 0.4578275, 0.40821073)
|
||
|
if std is None:
|
||
|
std = (0.26862954, 0.26130258, 0.27577711)
|
||
|
|
||
|
self.normalize = transforms.Normalize(mean, std)
|
||
|
|
||
|
self.transform = transforms.Compose(
|
||
|
[
|
||
|
transforms.Resize(
|
||
|
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
||
|
),
|
||
|
transforms.ToTensor(),
|
||
|
self.normalize,
|
||
|
]
|
||
|
)
|
||
|
def __call__(self, item):
|
||
|
return self.transform(item)
|
||
|
|
||
|
|
||
|
|
||
|
class GOTConfig(Qwen2Config):
|
||
|
model_type = "GOT"
|
||
|
|
||
|
|
||
|
class GOTQwenModel(Qwen2Model):
|
||
|
config_class = GOTConfig
|
||
|
|
||
|
def __init__(self, config: Qwen2Config):
|
||
|
super(GOTQwenModel, self).__init__(config)
|
||
|
|
||
|
self.vision_tower_high = build_GOT_vit_b()
|
||
|
|
||
|
self.mm_projector_vary = nn.Linear(1024, 1024)
|
||
|
|
||
|
|
||
|
def initialize_vision_modules(
|
||
|
self,
|
||
|
vision_tower,
|
||
|
pretrained_stage1_model=None,
|
||
|
freeze_vision_tower=False,
|
||
|
use_im_start_end=False,
|
||
|
vision_select_layer=-1,
|
||
|
dtype=torch.float16,
|
||
|
device="cuda"
|
||
|
):
|
||
|
|
||
|
|
||
|
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||
|
|
||
|
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
||
|
|
||
|
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
||
|
|
||
|
|
||
|
image_token_len = 256
|
||
|
|
||
|
self.config.vision_tower = vision_tower
|
||
|
self.config.image_token_len = image_token_len
|
||
|
|
||
|
self.config.use_im_start_end = True
|
||
|
|
||
|
self.config.vision_select_layer = vision_select_layer
|
||
|
self.config.freeze_vision_tower = freeze_vision_tower
|
||
|
|
||
|
return dict(
|
||
|
image_processor_high=image_processor_high,
|
||
|
image_token_len=image_token_len,
|
||
|
)
|
||
|
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
images: Optional[torch.FloatTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||
|
|
||
|
# HACK: replace back original embeddings for LLaVA pretraining
|
||
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
||
|
if orig_embeds_params is not None:
|
||
|
with torch.no_grad():
|
||
|
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||
|
|
||
|
|
||
|
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
||
|
|
||
|
|
||
|
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
||
|
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
||
|
|
||
|
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
||
|
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
||
|
im_start_token = getattr(self.config, "im_start_token", -1)
|
||
|
im_end_token = getattr(self.config, "im_end_token", -1)
|
||
|
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
|
||
|
|
||
|
im_patch_token = 151859
|
||
|
|
||
|
im_start_token = 151857
|
||
|
|
||
|
im_end_token = 151858
|
||
|
|
||
|
image_features = []
|
||
|
|
||
|
for image in images:
|
||
|
P, C, H, W = image.shape
|
||
|
if P == 1:
|
||
|
with torch.set_grad_enabled(False):
|
||
|
cnn_feature = vision_tower_high(image)
|
||
|
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
||
|
image_feature = self.mm_projector_vary(cnn_feature)
|
||
|
image_features.append(image_feature)
|
||
|
|
||
|
else:
|
||
|
image_patches = torch.unbind(image)
|
||
|
image_patches_features = []
|
||
|
for image_patch in image_patches:
|
||
|
image_p = torch.stack([image_patch])
|
||
|
|
||
|
with torch.set_grad_enabled(False):
|
||
|
cnn_feature_p = vision_tower_high(image_p)
|
||
|
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
||
|
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
||
|
image_patches_features.append(image_feature_p)
|
||
|
image_feature = torch.cat(image_patches_features, dim=1)
|
||
|
image_features.append(image_feature)
|
||
|
|
||
|
|
||
|
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
||
|
dummy_image_features = dummy_image_features_2
|
||
|
use_im_start_end = True
|
||
|
new_input_embeds = []
|
||
|
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
|
||
|
if (cur_input_ids == im_patch_token).sum() == 0:
|
||
|
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
||
|
new_input_embeds.append(cur_input_embeds)
|
||
|
continue
|
||
|
|
||
|
if use_im_start_end:
|
||
|
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
||
|
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
||
|
|
||
|
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
||
|
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
||
|
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
||
|
num_patches = per_cur_image_features.shape[0]
|
||
|
|
||
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
||
|
raise ValueError("The image end token should follow the image start token.")
|
||
|
|
||
|
cur_input_embeds = torch.cat(
|
||
|
(
|
||
|
cur_input_embeds[:image_start_token_pos+1],
|
||
|
per_cur_image_features,
|
||
|
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
||
|
),
|
||
|
dim=0
|
||
|
)
|
||
|
|
||
|
|
||
|
new_input_embeds.append(cur_input_embeds)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
||
|
|
||
|
return super(GOTQwenModel, self).forward(
|
||
|
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
||
|
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
|
||
|
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict
|
||
|
)
|
||
|
|
||
|
|
||
|
|
||
|
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
||
|
config_class = GOTConfig
|
||
|
# supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super(Qwen2ForCausalLM, self).__init__(config)
|
||
|
self.model = GOTQwenModel(config)
|
||
|
|
||
|
self.vocab_size = config.vocab_size
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_model(self):
|
||
|
return self.model
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.LongTensor = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
images: Optional[torch.FloatTensor] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
|
||
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.model(
|
||
|
input_ids=input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
images=images,
|
||
|
return_dict=return_dict
|
||
|
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
logits = logits.float()
|
||
|
|
||
|
# logits
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||
|
shift_labels = shift_labels.view(-1)
|
||
|
# Enable model parallelism
|
||
|
shift_labels = shift_labels.to(shift_logits.device)
|
||
|
loss = loss_fct(shift_logits, shift_labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return (loss,) + output if loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||
|
):
|
||
|
# Omit tokens covered by past_key_values
|
||
|
if past_key_values is not None:
|
||
|
if isinstance(past_key_values, Cache):
|
||
|
cache_length = past_key_values.get_seq_length()
|
||
|
past_length = past_key_values.seen_tokens
|
||
|
max_cache_length = past_key_values.get_max_length()
|
||
|
else:
|
||
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
||
|
max_cache_length = None
|
||
|
|
||
|
# Keep only the unprocessed tokens:
|
||
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||
|
# input)
|
||
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||
|
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
||
|
# input_ids based on the past_length.
|
||
|
elif past_length < input_ids.shape[1]:
|
||
|
input_ids = input_ids[:, past_length:]
|
||
|
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
||
|
|
||
|
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
||
|
if (
|
||
|
max_cache_length is not None
|
||
|
and attention_mask is not None
|
||
|
and cache_length + input_ids.shape[1] > max_cache_length
|
||
|
):
|
||
|
attention_mask = attention_mask[:, -max_cache_length:]
|
||
|
|
||
|
position_ids = kwargs.get("position_ids", None)
|
||
|
if attention_mask is not None and position_ids is None:
|
||
|
# create position_ids on the fly for batch generation
|
||
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
||
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
||
|
if past_key_values:
|
||
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and past_key_values is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids}
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"position_ids": position_ids,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": kwargs.get("use_cache"),
|
||
|
"attention_mask": attention_mask,
|
||
|
"images": kwargs.get("images", None),
|
||
|
}
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
def initialize_vision_tokenizer(
|
||
|
self,
|
||
|
tokenizer,
|
||
|
freeze_lm_model=False,
|
||
|
pretrained_stage1_model=None,
|
||
|
device="cuda"
|
||
|
):
|
||
|
config = self.get_model().config
|
||
|
|
||
|
|
||
|
self.resize_token_embeddings(len(tokenizer))
|
||
|
|
||
|
config.im_patch_token = 151859
|
||
|
|
||
|
config.use_im_start_end = True
|
||
|
|
||
|
if config.use_im_start_end:
|
||
|
self.resize_token_embeddings(len(tokenizer))
|
||
|
config.im_start_token, config.im_end_token = 151857, 151858
|
||
|
|
||
|
def load_image(self, image_file):
|
||
|
if image_file.startswith('http') or image_file.startswith('https'):
|
||
|
response = requests.get(image_file)
|
||
|
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||
|
else:
|
||
|
image = Image.open(image_file).convert('RGB')
|
||
|
return image
|
||
|
|
||
|
def disable_torch_init(self):
|
||
|
"""
|
||
|
Disable the redundant torch default initialization to accelerate model creation.
|
||
|
"""
|
||
|
import torch
|
||
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
||
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
||
|
|
||
|
def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
||
|
|
||
|
self.disable_torch_init()
|
||
|
|
||
|
|
||
|
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||
|
|
||
|
use_im_start_end = True
|
||
|
|
||
|
image_token_len = 256
|
||
|
|
||
|
if gradio_input:
|
||
|
image = image_file.copy()
|
||
|
else:
|
||
|
image = self.load_image(image_file)
|
||
|
|
||
|
w, h = image.size
|
||
|
|
||
|
if ocr_type == 'format':
|
||
|
qs = 'OCR with format: '
|
||
|
else:
|
||
|
qs = 'OCR: '
|
||
|
|
||
|
if ocr_box:
|
||
|
bbox = eval(ocr_box)
|
||
|
if len(bbox) == 2:
|
||
|
bbox[0] = int(bbox[0]/w*1000)
|
||
|
bbox[1] = int(bbox[1]/h*1000)
|
||
|
if len(bbox) == 4:
|
||
|
bbox[0] = int(bbox[0]/w*1000)
|
||
|
bbox[1] = int(bbox[1]/h*1000)
|
||
|
bbox[2] = int(bbox[2]/w*1000)
|
||
|
bbox[3] = int(bbox[3]/h*1000)
|
||
|
if ocr_type == 'format':
|
||
|
qs = str(bbox) + ' ' + 'OCR with format: '
|
||
|
else:
|
||
|
qs = str(bbox) + ' ' + 'OCR: '
|
||
|
|
||
|
if ocr_color:
|
||
|
if ocr_type == 'format':
|
||
|
qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
|
||
|
else:
|
||
|
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
||
|
|
||
|
if use_im_start_end:
|
||
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||
|
else:
|
||
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||
|
|
||
|
|
||
|
conv_mpt = Conversation(
|
||
|
system="""<|im_start|>system
|
||
|
You should follow the instructions carefully and explain your answers in detail.""",
|
||
|
# system = None,
|
||
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||
|
version="mpt",
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.MPT,
|
||
|
sep="<|im_end|>",
|
||
|
)
|
||
|
|
||
|
conv = conv_mpt.copy()
|
||
|
conv.append_message(conv.roles[0], qs)
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
prompt = conv.get_prompt()
|
||
|
|
||
|
if print_prompt:
|
||
|
print(prompt)
|
||
|
|
||
|
inputs = tokenizer([prompt])
|
||
|
|
||
|
image_tensor_1 = image_processor_high(image)
|
||
|
|
||
|
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||
|
|
||
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||
|
keywords = [stop_str]
|
||
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||
|
|
||
|
if stream_flag:
|
||
|
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||
|
output_ids = self.generate(
|
||
|
input_ids,
|
||
|
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
||
|
do_sample=False,
|
||
|
num_beams = 1,
|
||
|
no_repeat_ngram_size = 20,
|
||
|
streamer=streamer,
|
||
|
max_new_tokens=4096,
|
||
|
stopping_criteria=[stopping_criteria]
|
||
|
)
|
||
|
else:
|
||
|
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||
|
output_ids = self.generate(
|
||
|
input_ids,
|
||
|
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
||
|
do_sample=False,
|
||
|
num_beams = 1,
|
||
|
no_repeat_ngram_size = 20,
|
||
|
# streamer=streamer,
|
||
|
max_new_tokens=4096,
|
||
|
stopping_criteria=[stopping_criteria]
|
||
|
)
|
||
|
|
||
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
||
|
|
||
|
if outputs.endswith(stop_str):
|
||
|
outputs = outputs[:-len(stop_str)]
|
||
|
outputs = outputs.strip()
|
||
|
response_str = outputs
|
||
|
|
||
|
if render:
|
||
|
print('==============rendering===============')
|
||
|
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
|
||
|
|
||
|
if '**kern' in outputs:
|
||
|
import verovio
|
||
|
tk = verovio.toolkit()
|
||
|
tk.loadData(outputs)
|
||
|
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
||
|
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
||
|
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
||
|
tk.getPageCount()
|
||
|
svg = tk.renderToSVG()
|
||
|
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
||
|
|
||
|
svg_to_html(svg, save_render_file)
|
||
|
|
||
|
if ocr_type == 'format' and '**kern' not in outputs:
|
||
|
|
||
|
|
||
|
if '\\begin{tikzpicture}' not in outputs:
|
||
|
html_path_2 = save_render_file
|
||
|
right_num = outputs.count('\\right')
|
||
|
left_num = outputs.count('\left')
|
||
|
|
||
|
if right_num != left_num:
|
||
|
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
||
|
|
||
|
|
||
|
outputs = outputs.replace('"', '``').replace('$', '')
|
||
|
|
||
|
outputs_list = outputs.split('\n')
|
||
|
gt= ''
|
||
|
for out in outputs_list:
|
||
|
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
||
|
|
||
|
gt = gt[:-2]
|
||
|
|
||
|
|
||
|
lines = content_mmd_to_html
|
||
|
lines = lines.split("const text =")
|
||
|
new_web = lines[0] + 'const text =' + gt + lines[1]
|
||
|
|
||
|
else:
|
||
|
html_path_2 = save_render_file
|
||
|
outputs = outputs.translate(translation_table)
|
||
|
outputs_list = outputs.split('\n')
|
||
|
gt= ''
|
||
|
for out in outputs_list:
|
||
|
if out:
|
||
|
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
||
|
while out[-1] == ' ':
|
||
|
out = out[:-1]
|
||
|
if out is None:
|
||
|
break
|
||
|
|
||
|
if out:
|
||
|
if out[-1] != ';':
|
||
|
gt += out[:-1] + ';\n'
|
||
|
else:
|
||
|
gt += out + '\n'
|
||
|
else:
|
||
|
gt += out + '\n'
|
||
|
|
||
|
|
||
|
lines = tik_html
|
||
|
lines = lines.split("const text =")
|
||
|
new_web = lines[0] + gt + lines[1]
|
||
|
|
||
|
with open(html_path_2, 'w') as web_f_new:
|
||
|
web_f_new.write(new_web)
|
||
|
return response_str
|
||
|
|
||
|
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
||
|
|
||
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||
|
best_ratio_diff = float('inf')
|
||
|
best_ratio = (1, 1)
|
||
|
area = width * height
|
||
|
for ratio in target_ratios:
|
||
|
target_aspect_ratio = ratio[0] / ratio[1]
|
||
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||
|
if ratio_diff < best_ratio_diff:
|
||
|
best_ratio_diff = ratio_diff
|
||
|
best_ratio = ratio
|
||
|
elif ratio_diff == best_ratio_diff:
|
||
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||
|
best_ratio = ratio
|
||
|
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
||
|
return best_ratio
|
||
|
|
||
|
orig_width, orig_height = image.size
|
||
|
aspect_ratio = orig_width / orig_height
|
||
|
|
||
|
# calculate the existing image aspect ratio
|
||
|
target_ratios = set(
|
||
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
||
|
i * j <= max_num and i * j >= min_num)
|
||
|
# print(target_ratios)
|
||
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||
|
|
||
|
# find the closest aspect ratio to the target
|
||
|
target_aspect_ratio = find_closest_aspect_ratio(
|
||
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
||
|
|
||
|
# print(target_aspect_ratio)
|
||
|
# calculate the target width and height
|
||
|
target_width = image_size * target_aspect_ratio[0]
|
||
|
target_height = image_size * target_aspect_ratio[1]
|
||
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||
|
|
||
|
# resize the image
|
||
|
resized_img = image.resize((target_width, target_height))
|
||
|
processed_images = []
|
||
|
for i in range(blocks):
|
||
|
box = (
|
||
|
(i % (target_width // image_size)) * image_size,
|
||
|
(i // (target_width // image_size)) * image_size,
|
||
|
((i % (target_width // image_size)) + 1) * image_size,
|
||
|
((i // (target_width // image_size)) + 1) * image_size
|
||
|
)
|
||
|
# split the image
|
||
|
split_img = resized_img.crop(box)
|
||
|
processed_images.append(split_img)
|
||
|
assert len(processed_images) == blocks
|
||
|
if use_thumbnail and len(processed_images) != 1:
|
||
|
thumbnail_img = image.resize((image_size, image_size))
|
||
|
processed_images.append(thumbnail_img)
|
||
|
return processed_images
|
||
|
|
||
|
|
||
|
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
||
|
# Model
|
||
|
self.disable_torch_init()
|
||
|
multi_page=False
|
||
|
|
||
|
|
||
|
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
||
|
|
||
|
use_im_start_end = True
|
||
|
|
||
|
|
||
|
image_token_len = 256
|
||
|
|
||
|
image_list = []
|
||
|
|
||
|
# if len(image_file_list)>1:
|
||
|
# multi_page = True
|
||
|
|
||
|
if multi_page:
|
||
|
qs = 'OCR with format across multi pages: '
|
||
|
# only for png files
|
||
|
# import glob
|
||
|
# from natsort import natsorted
|
||
|
# patches = glob.glob(image_file + '/*png')
|
||
|
patches = image_file
|
||
|
# patches = natsorted(patches)
|
||
|
sub_images = []
|
||
|
for sub_image in patches:
|
||
|
sub_images.append(self.load_image(sub_image))
|
||
|
|
||
|
ll = len(patches)
|
||
|
# print(patches)
|
||
|
# print("len ll: ", ll)
|
||
|
|
||
|
else:
|
||
|
if ocr_type == 'format':
|
||
|
qs = 'OCR with format upon the patch reference: '
|
||
|
else:
|
||
|
qs = 'OCR upon the patch reference: '
|
||
|
if gradio_input:
|
||
|
img = image_file.copy()
|
||
|
else:
|
||
|
img = self.load_image(image_file)
|
||
|
sub_images = self.dynamic_preprocess(img)
|
||
|
ll = len(sub_images)
|
||
|
|
||
|
for image in sub_images:
|
||
|
image_tensor_1 = image_processor_high(image)
|
||
|
image_list.append(image_tensor_1)
|
||
|
|
||
|
|
||
|
image_list = torch.stack(image_list)
|
||
|
|
||
|
print('====new images batch size======: \n',image_list.shape)
|
||
|
|
||
|
|
||
|
if use_im_start_end:
|
||
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||
|
else:
|
||
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||
|
|
||
|
|
||
|
conv_mpt = Conversation(
|
||
|
system="""<|im_start|>system
|
||
|
You should follow the instructions carefully and explain your answers in detail.""",
|
||
|
# system = None,
|
||
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||
|
version="mpt",
|
||
|
messages=(),
|
||
|
offset=0,
|
||
|
sep_style=SeparatorStyle.MPT,
|
||
|
sep="<|im_end|>",
|
||
|
)
|
||
|
|
||
|
conv = conv_mpt.copy()
|
||
|
conv.append_message(conv.roles[0], qs)
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
prompt = conv.get_prompt()
|
||
|
|
||
|
if print_prompt:
|
||
|
print(prompt)
|
||
|
|
||
|
inputs = tokenizer([prompt])
|
||
|
|
||
|
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||
|
|
||
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||
|
keywords = [stop_str]
|
||
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||
|
|
||
|
if stream_flag:
|
||
|
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||
|
output_ids = self.generate(
|
||
|
input_ids,
|
||
|
images=[image_list.half().cuda()],
|
||
|
do_sample=False,
|
||
|
num_beams = 1,
|
||
|
# no_repeat_ngram_size = 20,
|
||
|
streamer=streamer,
|
||
|
max_new_tokens=4096,
|
||
|
stopping_criteria=[stopping_criteria]
|
||
|
)
|
||
|
else:
|
||
|
with torch.autocast("cuda", dtype=torch.bfloat16):
|
||
|
output_ids = self.generate(
|
||
|
input_ids,
|
||
|
images=[image_list.half().cuda()],
|
||
|
do_sample=False,
|
||
|
num_beams = 1,
|
||
|
# no_repeat_ngram_size = 20,
|
||
|
# streamer=streamer,
|
||
|
max_new_tokens=4096,
|
||
|
stopping_criteria=[stopping_criteria]
|
||
|
)
|
||
|
|
||
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
||
|
|
||
|
if outputs.endswith(stop_str):
|
||
|
outputs = outputs[:-len(stop_str)]
|
||
|
outputs = outputs.strip()
|
||
|
response_str = outputs
|
||
|
|
||
|
if render:
|
||
|
print('==============rendering===============')
|
||
|
from .render_tools import content_mmd_to_html
|
||
|
html_path_2 = save_render_file
|
||
|
right_num = outputs.count('\\right')
|
||
|
left_num = outputs.count('\left')
|
||
|
|
||
|
if right_num != left_num:
|
||
|
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
||
|
|
||
|
|
||
|
outputs = outputs.replace('"', '``').replace('$', '')
|
||
|
|
||
|
outputs_list = outputs.split('\n')
|
||
|
gt= ''
|
||
|
for out in outputs_list:
|
||
|
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
||
|
|
||
|
gt = gt[:-2]
|
||
|
|
||
|
lines = content_mmd_to_html
|
||
|
lines = lines.split("const text =")
|
||
|
new_web = lines[0] + 'const text =' + gt + lines[1]
|
||
|
|
||
|
with open(html_path_2, 'w') as web_f_new:
|
||
|
web_f_new.write(new_web)
|
||
|
|
||
|
return response_str
|