General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model
Go to file
xxl 3d7978286f first commit 2024-11-01 17:30:48 +08:00
.gitattributes Add .gitattributes 2024-11-01 17:11:47 +08:00
README.md first commit 2024-11-01 17:30:48 +08:00
config.json first commit 2024-11-01 17:30:48 +08:00
configuration.json first commit 2024-11-01 17:30:48 +08:00
generation_config.json first commit 2024-11-01 17:30:48 +08:00
got_vision_b.py first commit 2024-11-01 17:30:48 +08:00
model.safetensors first commit 2024-11-01 17:30:48 +08:00
modeling_GOT.py first commit 2024-11-01 17:30:48 +08:00
qwen.tiktoken first commit 2024-11-01 17:30:48 +08:00
render_tools.py first commit 2024-11-01 17:30:48 +08:00
special_tokens_map.json first commit 2024-11-01 17:30:48 +08:00
tokenization_qwen.py first commit 2024-11-01 17:30:48 +08:00
tokenizer_config.json first commit 2024-11-01 17:30:48 +08:00

README.md

pipeline_tag library_name language tags license studios
image-text-to-text transformers
multilingual
got
vision-language
ocr2.0
custom_code
apache-2.0
stepfun-ai/GOT_official_online_demo

General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model

🔋Online Demo | 🌟GitHub | 📜Paper

Haoran Wei*, Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, Chunrui Han, Xiangyu Zhang

image/jpeg

Usage

Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10

torch==2.0.1
torchvision==0.15.2
transformers==4.37.2
tiktoken==0.6.0
verovio==4.3.1
accelerate==0.28.0
from modelscope import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()


# input your test image
image_file = '/mnt/workspace/58F3EF14-E073-4BBE-B9D9-53CCFE6AE183.png'

# plain texts OCR
res = model.chat(tokenizer, image_file, ocr_type='ocr')

# format texts OCR:
# res = model.chat(tokenizer, image_file, ocr_type='format')

# fine-grained OCR:
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')

# multi-crop OCR:
# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
# res = model.chat_crop(tokenizer, image_file, ocr_type='format')

# render the formatted OCR results:
# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')

print(res)



More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub. Our training codes are available at our GitHub.

More Multimodal Projects

👏 Welcome to explore more multimodal projects of our team:

Vary | Fox | OneChart

Citation

If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️

@article{wei2024general,
  title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},
  author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},
  journal={arXiv preprint arXiv:2409.01704},
  year={2024}
}
@article{liu2024focus,
  title={Focus Anywhere for Fine-grained Multi-page Document Understanding},
  author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
  journal={arXiv preprint arXiv:2405.14295},
  year={2024}
}
@article{wei2023vary,
  title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
  author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
  journal={arXiv preprint arXiv:2312.06109},
  year={2023}
}