1252 lines
58 KiB
Python
1252 lines
58 KiB
Python
# This code has been adapter from the Olmo2 codebase and updated to match the Instella model details.
|
||
# https://github.com/huggingface/transformers/tree/v4.47.1/src/transformers/models/olmo2
|
||
|
||
import math
|
||
from typing import List, Optional, Tuple, Union
|
||
|
||
import torch
|
||
from torch import nn
|
||
|
||
from transformers.activations import ACT2FN
|
||
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
||
from transformers.generation import GenerationMixin
|
||
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
from transformers.modeling_utils import PreTrainedModel
|
||
from transformers.utils import (
|
||
add_start_docstrings,
|
||
add_start_docstrings_to_model_forward,
|
||
is_flash_attn_2_available,
|
||
is_flash_attn_greater_or_equal_2_10,
|
||
logging,
|
||
replace_return_docstrings,
|
||
)
|
||
|
||
"""
|
||
Instella configuration
|
||
"""
|
||
|
||
from transformers import AutoConfig, PretrainedConfig
|
||
|
||
class InstellaConfig(PretrainedConfig):
|
||
r"""
|
||
This is the configuration class to store the configuration of a [`Instella2Model`]. It is used to instantiate an Instella2
|
||
model according to the specified arguments, defining the model architecture.
|
||
|
||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
documentation from [`PretrainedConfig`] for more information.
|
||
|
||
|
||
Args:
|
||
vocab_size (`int`, *optional*, defaults to 50304):
|
||
Vocabulary size of the Instella2 model. Defines the number of different tokens that can be represented by the
|
||
`inputs_ids` passed when calling [`Instella2Model`]
|
||
hidden_size (`int`, *optional*, defaults to 4096):
|
||
Dimension of the hidden representations.
|
||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||
Dimension of the MLP representations.
|
||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||
Number of hidden layers in the Transformer decoder.
|
||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||
Number of attention heads for each attention layer in the Transformer decoder.
|
||
num_key_value_heads (`int`, *optional*):
|
||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||
by meanpooling all the original heads within that group. For more details checkout [this
|
||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||
`num_attention_heads`.
|
||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
The non-linear activation function (function or string) in the decoder.
|
||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||
The maximum sequence length that this model might ever be used with.
|
||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
use_cache (`bool`, *optional*, defaults to `True`):
|
||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
relevant if `config.is_decoder=True`.
|
||
pad_token_id (`int`, *optional*, defaults to 1):
|
||
Padding token id.
|
||
bos_token_id (`int`, *optional*):
|
||
Beginning of stream token id.
|
||
eos_token_id (`int`, *optional*, defaults to 50279):
|
||
End of stream token id.
|
||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
Whether to tie weight embeddings
|
||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||
The base period of the RoPE embeddings.
|
||
rope_scaling (`Dict`, *optional*):
|
||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||
these scaling strategies behave:
|
||
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
||
experimental feature, subject to breaking API changes in future versions.
|
||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
The dropout ratio for the attention probabilities.
|
||
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||
The epsilon used by the rms normalization layers.
|
||
|
||
```python
|
||
>>> from transformers import Instella2Model, Instella2Config
|
||
|
||
>>> configuration = Instella2Config()
|
||
>>> model = Instella2Model(configuration)
|
||
|
||
>>> # Accessing the model configuration
|
||
>>> configuration = model.config
|
||
```
|
||
"""
|
||
|
||
model_type = "instella"
|
||
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
||
def __init__(
|
||
self,
|
||
vocab_size=50304,
|
||
hidden_size=4096,
|
||
intermediate_size=11008,
|
||
num_hidden_layers=32,
|
||
num_attention_heads=32,
|
||
num_key_value_heads=None,
|
||
hidden_act="silu",
|
||
max_position_embeddings=2048,
|
||
initializer_range=0.02,
|
||
use_cache=True,
|
||
pad_token_id=1,
|
||
bos_token_id=None,
|
||
eos_token_id=50279,
|
||
tie_word_embeddings=False,
|
||
rope_theta=10000.0,
|
||
rope_scaling=None,
|
||
attention_bias=False,
|
||
attention_dropout=0.0,
|
||
rms_norm_eps=1e-5,
|
||
**kwargs,
|
||
):
|
||
super().__init__(
|
||
pad_token_id=pad_token_id,
|
||
bos_token_id=bos_token_id,
|
||
eos_token_id=eos_token_id,
|
||
tie_word_embeddings=tie_word_embeddings,
|
||
**kwargs,
|
||
)
|
||
self.vocab_size = vocab_size
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.hidden_size = hidden_size
|
||
self.intermediate_size = intermediate_size
|
||
self.num_hidden_layers = num_hidden_layers
|
||
self.num_attention_heads = num_attention_heads
|
||
|
||
# for backward compatibility
|
||
if num_key_value_heads is None:
|
||
num_key_value_heads = num_attention_heads
|
||
|
||
self.num_key_value_heads = num_key_value_heads
|
||
self.hidden_act = hidden_act
|
||
self.initializer_range = initializer_range
|
||
self.use_cache = use_cache
|
||
self.rope_theta = rope_theta
|
||
self.rope_scaling = rope_scaling
|
||
self._rope_scaling_validation()
|
||
self.attention_bias = attention_bias
|
||
self.attention_dropout = attention_dropout
|
||
|
||
self.rms_norm_eps = rms_norm_eps
|
||
|
||
def _rope_scaling_validation(self):
|
||
"""
|
||
Validate the `rope_scaling` configuration.
|
||
"""
|
||
if self.rope_scaling is None:
|
||
return
|
||
|
||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||
raise ValueError(
|
||
"`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
|
||
)
|
||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||
raise ValueError(
|
||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||
)
|
||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
||
|
||
|
||
if is_flash_attn_2_available():
|
||
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
||
|
||
|
||
logger = logging.get_logger(__name__)
|
||
|
||
_CONFIG_FOR_DOC = "InstellaConfig"
|
||
|
||
|
||
class InstellaRMSNorm(nn.Module):
|
||
def __init__(self, hidden_size, eps=1e-6):
|
||
"""
|
||
InstellaRMSNorm is equivalent to T5LayerNorm
|
||
"""
|
||
super().__init__()
|
||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||
self.variance_epsilon = eps
|
||
|
||
def forward(self, hidden_states):
|
||
input_dtype = hidden_states.dtype
|
||
hidden_states = hidden_states.to(torch.float32)
|
||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||
return self.weight * hidden_states.to(input_dtype)
|
||
|
||
def extra_repr(self):
|
||
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
||
|
||
|
||
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Instella
|
||
# TODO(joao): add me back asap :)
|
||
class InstellaRotaryEmbedding(nn.Module):
|
||
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
||
super().__init__()
|
||
self.scaling_factor = scaling_factor
|
||
self.dim = dim
|
||
self.max_position_embeddings = max_position_embeddings
|
||
self.base = base
|
||
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||
# For BC we register cos and sin cached
|
||
self.max_seq_len_cached = max_position_embeddings
|
||
|
||
@torch.no_grad()
|
||
def forward(self, x, position_ids):
|
||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||
position_ids_expanded = position_ids[:, None, :].float()
|
||
# Force float32 since bfloat16 loses precision on long contexts
|
||
# See https://github.com/huggingface/transformers/pull/29285
|
||
device_type = x.device.type
|
||
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
||
with torch.autocast(device_type=device_type, enabled=False):
|
||
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||
emb = torch.cat((freqs, freqs), dim=-1)
|
||
cos = emb.cos()
|
||
sin = emb.sin()
|
||
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
||
|
||
|
||
# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Instella
|
||
# TODO(joao): add me back asap :)
|
||
class InstellaLinearScalingRotaryEmbedding(InstellaRotaryEmbedding):
|
||
"""InstellaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
||
|
||
def forward(self, x, position_ids):
|
||
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
||
position_ids = position_ids.float() / self.scaling_factor
|
||
cos, sin = super().forward(x, position_ids)
|
||
return cos, sin
|
||
|
||
|
||
# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Instella
|
||
# TODO(joao): add me back asap :)
|
||
class InstellaDynamicNTKScalingRotaryEmbedding(InstellaRotaryEmbedding):
|
||
"""InstellaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
||
|
||
def forward(self, x, position_ids):
|
||
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
||
seq_len = torch.max(position_ids) + 1
|
||
if seq_len > self.max_position_embeddings:
|
||
base = self.base * (
|
||
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
||
) ** (self.dim / (self.dim - 2))
|
||
inv_freq = 1.0 / (
|
||
base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
|
||
)
|
||
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
||
|
||
cos, sin = super().forward(x, position_ids)
|
||
return cos, sin
|
||
|
||
|
||
def rotate_half(x):
|
||
"""Rotates half the hidden dims of the input."""
|
||
x1 = x[..., : x.shape[-1] // 2]
|
||
x2 = x[..., x.shape[-1] // 2 :]
|
||
return torch.cat((-x2, x1), dim=-1)
|
||
|
||
|
||
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
||
"""Applies Rotary Position Embedding to the query and key tensors.
|
||
|
||
Args:
|
||
q (`torch.Tensor`): The query tensor.
|
||
k (`torch.Tensor`): The key tensor.
|
||
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
||
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
||
position_ids (`torch.Tensor`, *optional*):
|
||
Deprecated and unused.
|
||
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
||
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
||
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
||
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
||
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
||
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
||
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
||
Returns:
|
||
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
||
"""
|
||
cos = cos.unsqueeze(unsqueeze_dim)
|
||
sin = sin.unsqueeze(unsqueeze_dim)
|
||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||
return q_embed, k_embed
|
||
|
||
|
||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||
"""
|
||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||
"""
|
||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||
if n_rep == 1:
|
||
return hidden_states
|
||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||
|
||
|
||
class InstellaAttention(nn.Module):
|
||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
||
# copied from transformers.models.llama.modeling_llama.LlamaAttention.__init__ with Llama->Instella
|
||
# TODO(joao): add me back asap :)
|
||
def __init__(self, config: InstellaConfig, layer_idx: Optional[int] = None):
|
||
super().__init__()
|
||
self.config = config
|
||
self.layer_idx = layer_idx
|
||
if layer_idx is None:
|
||
logger.warning_once(
|
||
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
||
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
||
"when creating this class."
|
||
)
|
||
|
||
self.attention_dropout = config.attention_dropout
|
||
self.hidden_size = config.hidden_size
|
||
self.num_heads = config.num_attention_heads
|
||
self.head_dim = self.hidden_size // self.num_heads
|
||
self.num_key_value_heads = config.num_key_value_heads
|
||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||
self.max_position_embeddings = config.max_position_embeddings
|
||
self.rope_theta = config.rope_theta
|
||
self.is_causal = True
|
||
|
||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||
raise ValueError(
|
||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||
f" and `num_heads`: {self.num_heads})."
|
||
)
|
||
|
||
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
||
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
||
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
||
self._init_rope()
|
||
self.q_norm = InstellaRMSNorm(self.num_heads * self.head_dim, config.rms_norm_eps)
|
||
self.k_norm = InstellaRMSNorm(self.num_key_value_heads * self.head_dim, config.rms_norm_eps)
|
||
|
||
def _init_rope(self):
|
||
if self.config.rope_scaling is None:
|
||
self.rotary_emb = InstellaRotaryEmbedding(
|
||
self.head_dim,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
base=self.rope_theta,
|
||
)
|
||
else:
|
||
scaling_type = self.config.rope_scaling["type"]
|
||
scaling_factor = self.config.rope_scaling["factor"]
|
||
if scaling_type == "linear":
|
||
self.rotary_emb = InstellaLinearScalingRotaryEmbedding(
|
||
self.head_dim,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
scaling_factor=scaling_factor,
|
||
base=self.rope_theta,
|
||
)
|
||
elif scaling_type == "dynamic":
|
||
self.rotary_emb = InstellaDynamicNTKScalingRotaryEmbedding(
|
||
self.head_dim,
|
||
max_position_embeddings=self.max_position_embeddings,
|
||
scaling_factor=scaling_factor,
|
||
base=self.rope_theta,
|
||
)
|
||
else:
|
||
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
output_attentions: bool = False,
|
||
use_cache: bool = False,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
**kwargs,
|
||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
bsz, q_len, _ = hidden_states.size()
|
||
|
||
query_states = self.q_norm(self.q_proj(hidden_states))
|
||
key_states = self.k_norm(self.k_proj(hidden_states))
|
||
value_states = self.v_proj(hidden_states)
|
||
|
||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
||
if past_key_value is not None:
|
||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
|
||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||
|
||
if attention_mask is not None: # no matter the length, we just slice it
|
||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||
attn_weights = attn_weights + causal_mask
|
||
|
||
# upcast attention to fp32
|
||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
||
attn_output = torch.matmul(attn_weights, value_states)
|
||
|
||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||
raise ValueError(
|
||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||
f" {attn_output.size()}"
|
||
)
|
||
|
||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||
|
||
attn_output = self.o_proj(attn_output)
|
||
|
||
if not output_attentions:
|
||
attn_weights = None
|
||
|
||
return attn_output, attn_weights, past_key_value
|
||
|
||
|
||
class InstellaFlashAttention2(InstellaAttention):
|
||
"""
|
||
Instella flash attention module. This module inherits from `InstellaAttention` as the weights of the module stays
|
||
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
||
flash attention and deal with padding tokens in case the input contains any of them.
|
||
|
||
Instella flash attention module. This module inherits from `InstellaAttention` as the weights of the module stays
|
||
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
||
flash attention and deal with padding tokens in case the input contains any of them.
|
||
"""
|
||
|
||
def __init__(self, *args, **kwargs):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
||
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
||
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
||
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.LongTensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
output_attentions: bool = False,
|
||
use_cache: bool = False,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
**kwargs,
|
||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
output_attentions = False
|
||
|
||
bsz, q_len, _ = hidden_states.size()
|
||
|
||
query_states = self.q_norm(self.q_proj(hidden_states))
|
||
key_states = self.k_norm(self.k_proj(hidden_states))
|
||
value_states = self.v_proj(hidden_states)
|
||
|
||
# Flash attention requires the input to have the shape
|
||
# batch_size x seq_length x head_dim x hidden_dim
|
||
# therefore we just need to keep the original shape
|
||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
|
||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
|
||
if past_key_value is not None:
|
||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
|
||
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
||
# to be able to avoid many of these transpose/reshape/view.
|
||
query_states = query_states.transpose(1, 2)
|
||
key_states = key_states.transpose(1, 2)
|
||
value_states = value_states.transpose(1, 2)
|
||
|
||
dropout_rate = self.attention_dropout if self.training else 0.0
|
||
|
||
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
||
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
||
# cast them back in the correct dtype just to be sure everything works as expected.
|
||
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
||
# in fp32. (InstellaRMSNorm handles it correctly)
|
||
|
||
input_dtype = query_states.dtype
|
||
if input_dtype == torch.float32:
|
||
if torch.is_autocast_enabled():
|
||
target_dtype = torch.get_autocast_gpu_dtype()
|
||
# Handle the case where the model is quantized
|
||
elif hasattr(self.config, "_pre_quantization_dtype"):
|
||
target_dtype = self.config._pre_quantization_dtype
|
||
else:
|
||
target_dtype = self.q_proj.weight.dtype
|
||
|
||
logger.warning_once(
|
||
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
||
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
||
f" {target_dtype}."
|
||
)
|
||
|
||
query_states = query_states.to(target_dtype)
|
||
key_states = key_states.to(target_dtype)
|
||
value_states = value_states.to(target_dtype)
|
||
|
||
attn_output = _flash_attention_forward(
|
||
query_states,
|
||
key_states,
|
||
value_states,
|
||
attention_mask,
|
||
q_len,
|
||
position_ids=position_ids,
|
||
dropout=dropout_rate,
|
||
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
||
is_causal=self.is_causal,
|
||
)
|
||
|
||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||
attn_output = self.o_proj(attn_output)
|
||
|
||
if not output_attentions:
|
||
attn_weights = None
|
||
|
||
return attn_output, attn_weights, past_key_value
|
||
|
||
|
||
class InstellaSdpaAttention(InstellaAttention):
|
||
"""
|
||
Instella attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||
`InstellaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||
SDPA API.
|
||
"""
|
||
|
||
# Adapted from InstellaAttention.forward
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
output_attentions: bool = False,
|
||
use_cache: bool = False,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
if output_attentions:
|
||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||
logger.warning_once(
|
||
"InstellaModel is using InstellaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
||
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||
)
|
||
return super().forward(
|
||
hidden_states=hidden_states,
|
||
attention_mask=attention_mask,
|
||
position_ids=position_ids,
|
||
past_key_value=past_key_value,
|
||
output_attentions=output_attentions,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
)
|
||
bsz, q_len, _ = hidden_states.size()
|
||
query_states = self.q_norm(self.q_proj(hidden_states))
|
||
key_states = self.k_norm(self.k_proj(hidden_states))
|
||
value_states = self.v_proj(hidden_states)
|
||
|
||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||
if past_key_value is not None:
|
||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||
causal_mask = attention_mask
|
||
# if attention_mask is not None and cache_position is not None:
|
||
if attention_mask is not None:
|
||
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
||
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||
if query_states.device.type == "cuda" and causal_mask is not None:
|
||
query_states = query_states.contiguous()
|
||
key_states = key_states.contiguous()
|
||
value_states = value_states.contiguous()
|
||
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
||
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
||
is_causal = True if causal_mask is None and q_len > 1 else False
|
||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||
query_states,
|
||
key_states,
|
||
value_states,
|
||
attn_mask=causal_mask,
|
||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||
is_causal=is_causal,
|
||
)
|
||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
||
attn_output = self.o_proj(attn_output)
|
||
return attn_output, None, past_key_value
|
||
|
||
|
||
class InstellaMLP(nn.Module):
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
self.config = config
|
||
self.hidden_size = config.hidden_size
|
||
self.intermediate_size = config.intermediate_size
|
||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||
self.act_fn = ACT2FN[config.hidden_act]
|
||
|
||
def forward(self, x):
|
||
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||
|
||
|
||
Instella_ATTENTION_CLASSES = {
|
||
"eager": InstellaAttention,
|
||
"flash_attention_2": InstellaFlashAttention2,
|
||
"sdpa": InstellaSdpaAttention,
|
||
}
|
||
|
||
|
||
class InstellaDecoderLayer(nn.Module):
|
||
def __init__(self, config: InstellaConfig, layer_idx: int):
|
||
super().__init__()
|
||
self.hidden_size = config.hidden_size
|
||
|
||
self.self_attn = Instella_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
||
|
||
self.mlp = InstellaMLP(config)
|
||
self.pre_attention_layernorm = InstellaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
self.pre_feedforward_layernorm = InstellaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
||
# copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer.forward
|
||
# TODO(joao): add me back asap :)
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_value: Optional[Cache] = None,
|
||
output_attentions: Optional[bool] = False,
|
||
use_cache: Optional[bool] = False,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
**kwargs,
|
||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
"""
|
||
Args:
|
||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
attention_mask (`torch.FloatTensor`, *optional*):
|
||
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
||
query_sequence_length, key_sequence_length)` if default attention is used.
|
||
output_attentions (`bool`, *optional*):
|
||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
returned tensors for more detail.
|
||
use_cache (`bool`, *optional*):
|
||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
(see `past_key_values`).
|
||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
Indices depicting the position of the input sequence tokens in the sequence
|
||
kwargs (`dict`, *optional*):
|
||
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
||
into the model
|
||
"""
|
||
residual = hidden_states
|
||
|
||
# Self Attention
|
||
hidden_states = self.pre_attention_layernorm(hidden_states)
|
||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
hidden_states=hidden_states,
|
||
attention_mask=attention_mask,
|
||
position_ids=position_ids,
|
||
past_key_value=past_key_value,
|
||
output_attentions=output_attentions,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
**kwargs,
|
||
)
|
||
# hidden_states = self.post_attention_layernorm(hidden_states)
|
||
hidden_states = residual + hidden_states
|
||
# print(hidden_states)
|
||
|
||
# Fully Connected
|
||
residual = hidden_states
|
||
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
||
hidden_states = self.mlp(hidden_states)
|
||
# hidden_states = self.post_feedforward_layernorm(hidden_states)
|
||
hidden_states = residual + hidden_states
|
||
# print(hidden_states)
|
||
|
||
outputs = (hidden_states,)
|
||
if output_attentions:
|
||
outputs += (self_attn_weights,)
|
||
if use_cache:
|
||
outputs += (present_key_value,)
|
||
return outputs
|
||
|
||
|
||
Instella_START_DOCSTRING = r"""
|
||
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
etc.)
|
||
|
||
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
and behavior.
|
||
|
||
Parameters:
|
||
config ([`InstellaConfig`]):
|
||
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
||
load the weights associated with the model, only the configuration. Check out the
|
||
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
"""
|
||
|
||
|
||
@add_start_docstrings(
|
||
"The bare Instella Model outputting raw hidden-states without any specific head on top.",
|
||
Instella_START_DOCSTRING,
|
||
)
|
||
class InstellaPreTrainedModel(PreTrainedModel):
|
||
config_class = InstellaConfig
|
||
base_model_prefix = "model"
|
||
supports_gradient_checkpointing = True
|
||
_no_split_modules = ["InstellaDecoderLayer"]
|
||
_skip_keys_device_placement = ["past_key_values"]
|
||
_supports_flash_attn_2 = True
|
||
_supports_sdpa = True
|
||
_supports_cache_class = True
|
||
_supports_quantized_cache = True
|
||
_supports_static_cache = True
|
||
|
||
def _init_weights(self, module):
|
||
std = self.config.initializer_range
|
||
if isinstance(module, nn.Linear):
|
||
module.weight.data.normal_(mean=0.0, std=std)
|
||
if module.bias is not None:
|
||
module.bias.data.zero_()
|
||
elif isinstance(module, nn.Embedding):
|
||
module.weight.data.normal_(mean=0.0, std=std)
|
||
if module.padding_idx is not None:
|
||
module.weight.data[module.padding_idx].zero_()
|
||
|
||
|
||
Instella_INPUTS_DOCSTRING = r"""
|
||
Args:
|
||
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
it.
|
||
|
||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
||
[What are input IDs?](../glossary#input-ids)
|
||
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
||
- 1 for tokens that are **not masked**,
|
||
- 0 for tokens that are **masked**.
|
||
|
||
[What are attention masks?](../glossary#attention-mask)
|
||
|
||
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
||
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
||
`past_key_values`).
|
||
|
||
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
||
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
||
information on the default strategy.
|
||
|
||
- 1 indicates the head is **not masked**,
|
||
- 0 indicates the head is **masked**.
|
||
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
config.n_positions - 1]`.
|
||
|
||
[What are position IDs?](../glossary#position-ids)
|
||
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
||
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
||
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
||
|
||
Two formats are allowed:
|
||
- a [`~cache_utils.Cache`] instance, see our
|
||
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
||
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
||
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
||
cache format.
|
||
|
||
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
||
legacy cache format will be returned.
|
||
|
||
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
||
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
||
of shape `(batch_size, sequence_length)`.
|
||
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
model's internal embedding lookup matrix.
|
||
use_cache (`bool`, *optional*):
|
||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
`past_key_values`).
|
||
output_attentions (`bool`, *optional*):
|
||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
tensors for more detail.
|
||
output_hidden_states (`bool`, *optional*):
|
||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
more detail.
|
||
return_dict (`bool`, *optional*):
|
||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
||
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
||
the complete sequence length.
|
||
"""
|
||
|
||
|
||
@add_start_docstrings(
|
||
"The bare Instella Model outputting raw hidden-states without any specific head on top.",
|
||
Instella_START_DOCSTRING,
|
||
)
|
||
class InstellaModel(InstellaPreTrainedModel):
|
||
"""
|
||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InstellaDecoderLayer`]
|
||
|
||
Args:
|
||
config: InstellaConfig
|
||
"""
|
||
|
||
def __init__(self, config: InstellaConfig):
|
||
super().__init__(config)
|
||
self.padding_idx = config.pad_token_id
|
||
self.vocab_size = config.vocab_size
|
||
|
||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||
self.layers = nn.ModuleList(
|
||
[InstellaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||
)
|
||
# self.layers = self.layers[:5]
|
||
self.norm = InstellaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
self.gradient_checkpointing = False
|
||
|
||
# Initialize weights and apply final processing
|
||
self.post_init()
|
||
|
||
def get_input_embeddings(self):
|
||
return self.embed_tokens
|
||
|
||
def set_input_embeddings(self, value):
|
||
self.embed_tokens = value
|
||
|
||
@add_start_docstrings_to_model_forward(Instella_INPUTS_DOCSTRING)
|
||
# copied from transformers.models.llama.modeling_llama.LlamaModel.forward
|
||
# TODO(joao): add me back asap :)
|
||
def forward(
|
||
self,
|
||
input_ids: torch.LongTensor = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
output_hidden_states = (
|
||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
)
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||
|
||
if self.gradient_checkpointing and self.training and use_cache:
|
||
logger.warning_once(
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
||
)
|
||
use_cache = False
|
||
|
||
if inputs_embeds is None:
|
||
inputs_embeds = self.embed_tokens(input_ids)
|
||
# print(inputs_embeds)
|
||
|
||
# kept for BC (non `Cache` `past_key_values` inputs)
|
||
return_legacy_cache = False
|
||
if use_cache and not isinstance(past_key_values, Cache):
|
||
return_legacy_cache = True
|
||
if past_key_values is None:
|
||
past_key_values = DynamicCache()
|
||
else:
|
||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||
logger.warning_once(
|
||
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
||
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
||
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
||
)
|
||
|
||
if cache_position is None:
|
||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
cache_position = torch.arange(
|
||
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
||
)
|
||
if position_ids is None:
|
||
position_ids = cache_position.unsqueeze(0)
|
||
|
||
causal_mask = self._update_causal_mask(
|
||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||
)
|
||
|
||
# embed positions
|
||
hidden_states = inputs_embeds
|
||
|
||
# decoder layers
|
||
all_hidden_states = () if output_hidden_states else None
|
||
all_self_attns = () if output_attentions else None
|
||
next_decoder_cache = None
|
||
|
||
for decoder_layer in self.layers:
|
||
if output_hidden_states:
|
||
all_hidden_states += (hidden_states,)
|
||
|
||
if self.gradient_checkpointing and self.training:
|
||
layer_outputs = self._gradient_checkpointing_func(
|
||
decoder_layer.__call__,
|
||
hidden_states,
|
||
causal_mask,
|
||
position_ids,
|
||
past_key_values,
|
||
output_attentions,
|
||
use_cache,
|
||
cache_position,
|
||
)
|
||
else:
|
||
layer_outputs = decoder_layer(
|
||
hidden_states,
|
||
attention_mask=causal_mask,
|
||
position_ids=position_ids,
|
||
past_key_value=past_key_values,
|
||
output_attentions=output_attentions,
|
||
use_cache=use_cache,
|
||
cache_position=cache_position,
|
||
)
|
||
|
||
hidden_states = layer_outputs[0]
|
||
|
||
if use_cache:
|
||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||
|
||
if output_attentions:
|
||
all_self_attns += (layer_outputs[1],)
|
||
|
||
hidden_states = self.norm(hidden_states)
|
||
# print(hidden_states)
|
||
|
||
# add hidden states from the last decoder layer
|
||
if output_hidden_states:
|
||
all_hidden_states += (hidden_states,)
|
||
|
||
next_cache = next_decoder_cache if use_cache else None
|
||
if return_legacy_cache:
|
||
next_cache = next_cache.to_legacy_cache()
|
||
|
||
if not return_dict:
|
||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||
return BaseModelOutputWithPast(
|
||
last_hidden_state=hidden_states,
|
||
past_key_values=next_cache,
|
||
hidden_states=all_hidden_states,
|
||
attentions=all_self_attns,
|
||
)
|
||
|
||
def _update_causal_mask(
|
||
self,
|
||
attention_mask: torch.Tensor,
|
||
input_tensor: torch.Tensor,
|
||
cache_position: torch.Tensor,
|
||
past_key_values: Cache,
|
||
output_attentions: bool,
|
||
):
|
||
if self.config._attn_implementation == "flash_attention_2":
|
||
if attention_mask is not None and 0.0 in attention_mask:
|
||
return attention_mask
|
||
return None
|
||
|
||
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
||
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
||
# to infer the attention mask.
|
||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||
using_static_cache = isinstance(past_key_values, StaticCache)
|
||
|
||
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
||
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
||
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
||
attention_mask,
|
||
inputs_embeds=input_tensor,
|
||
past_key_values_length=past_seen_tokens,
|
||
is_training=self.training,
|
||
):
|
||
return None
|
||
|
||
dtype, device = input_tensor.dtype, input_tensor.device
|
||
sequence_length = input_tensor.shape[1]
|
||
if using_static_cache:
|
||
target_length = past_key_values.get_max_cache_shape()
|
||
else:
|
||
target_length = (
|
||
attention_mask.shape[-1]
|
||
if isinstance(attention_mask, torch.Tensor)
|
||
else past_seen_tokens + sequence_length + 1
|
||
)
|
||
|
||
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
||
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
||
attention_mask,
|
||
sequence_length=sequence_length,
|
||
target_length=target_length,
|
||
dtype=dtype,
|
||
device=device,
|
||
cache_position=cache_position,
|
||
batch_size=input_tensor.shape[0],
|
||
)
|
||
|
||
if (
|
||
self.config._attn_implementation == "sdpa"
|
||
and attention_mask is not None
|
||
and attention_mask.device.type == "cuda"
|
||
and not output_attentions
|
||
):
|
||
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
||
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
||
# Details: https://github.com/pytorch/pytorch/issues/110213
|
||
min_dtype = torch.finfo(dtype).min
|
||
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
||
|
||
return causal_mask
|
||
|
||
@staticmethod
|
||
def _prepare_4d_causal_attention_mask_with_cache_position(
|
||
attention_mask: torch.Tensor,
|
||
sequence_length: int,
|
||
target_length: int,
|
||
dtype: torch.dtype,
|
||
device: torch.device,
|
||
cache_position: torch.Tensor,
|
||
batch_size: int,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
||
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
||
|
||
Args:
|
||
attention_mask (`torch.Tensor`):
|
||
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
||
`(batch_size, 1, query_length, key_value_length)`.
|
||
sequence_length (`int`):
|
||
The sequence length being processed.
|
||
target_length (`int`):
|
||
The target length: when generating with static cache, the mask should be as long as the static cache,
|
||
to account for the 0 padding, the part of the cache that is not filled yet.
|
||
dtype (`torch.dtype`):
|
||
The dtype to use for the 4D attention mask.
|
||
device (`torch.device`):
|
||
The device to plcae the 4D attention mask on.
|
||
cache_position (`torch.Tensor`):
|
||
Indices depicting the position of the input sequence tokens in the sequence.
|
||
batch_size (`torch.Tensor`):
|
||
Batch size.
|
||
"""
|
||
if attention_mask is not None and attention_mask.dim() == 4:
|
||
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
||
causal_mask = attention_mask
|
||
else:
|
||
min_dtype = torch.finfo(dtype).min
|
||
causal_mask = torch.full(
|
||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||
)
|
||
if sequence_length != 1:
|
||
causal_mask = torch.triu(causal_mask, diagonal=1)
|
||
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
||
if attention_mask is not None:
|
||
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
||
mask_length = attention_mask.shape[-1]
|
||
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
||
padding_mask = padding_mask == 0
|
||
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
||
padding_mask, min_dtype
|
||
)
|
||
|
||
return causal_mask
|
||
|
||
# TODO: re-enable check: Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->Instella,Llama->Instella
|
||
class InstellaForCausalLM(InstellaPreTrainedModel, GenerationMixin):
|
||
_tied_weights_keys = ["lm_head.weight"]
|
||
|
||
def __init__(self, config: InstellaConfig):
|
||
super().__init__(config)
|
||
self.model = InstellaModel(config)
|
||
self.vocab_size = config.vocab_size
|
||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
||
# Initialize weights and apply final processing
|
||
self.post_init()
|
||
|
||
def get_input_embeddings(self):
|
||
return self.model.embed_tokens
|
||
|
||
def set_input_embeddings(self, value):
|
||
self.model.embed_tokens = value
|
||
|
||
def get_output_embeddings(self):
|
||
return self.lm_head
|
||
|
||
def set_output_embeddings(self, new_embeddings):
|
||
self.lm_head = new_embeddings
|
||
|
||
def set_decoder(self, decoder):
|
||
self.model = decoder
|
||
|
||
def get_decoder(self):
|
||
return self.model
|
||
|
||
@add_start_docstrings_to_model_forward(Instella_INPUTS_DOCSTRING)
|
||
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
||
# Ignore copy
|
||
def forward(
|
||
self,
|
||
input_ids: torch.LongTensor = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
labels: Optional[torch.LongTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
cache_position: Optional[torch.LongTensor] = None,
|
||
num_logits_to_keep: int = 0,
|
||
**loss_kwargs,
|
||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||
r"""
|
||
Args:
|
||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||
|
||
num_logits_to_keep (`int`, *optional*):
|
||
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
||
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
||
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
||
|
||
Returns:
|
||
|
||
Example:
|
||
|
||
```python
|
||
>>> from transformers import AutoTokenizer, InstellaForCausalLM
|
||
|
||
>>> model = InstellaForCausalLM.from_pretrained("allenai/Instella2-1B-hf")
|
||
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/Instella2-1B-hf")
|
||
|
||
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||
|
||
>>> # Generate
|
||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
||
```
|
||
"""
|
||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
output_hidden_states = (
|
||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
)
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||
outputs = self.model(
|
||
input_ids=input_ids,
|
||
attention_mask=attention_mask,
|
||
position_ids=position_ids,
|
||
past_key_values=past_key_values,
|
||
inputs_embeds=inputs_embeds,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions,
|
||
output_hidden_states=output_hidden_states,
|
||
return_dict=return_dict,
|
||
cache_position=cache_position,
|
||
)
|
||
|
||
hidden_states = outputs[0]
|
||
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
||
|
||
loss = None
|
||
if labels is not None:
|
||
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
||
|
||
if not return_dict:
|
||
output = (logits,) + outputs[1:]
|
||
return (loss,) + output if loss is not None else output
|
||
|
||
return CausalLMOutputWithPast(
|
||
loss=loss,
|
||
logits=logits,
|
||
past_key_values=outputs.past_key_values,
|
||
hidden_states=outputs.hidden_states,
|
||
attentions=outputs.attentions,
|
||
)
|
||
|