335 lines
13 KiB
Python
335 lines
13 KiB
Python
# Modification Copyright© 2025 Advanced Micro Devices, Inc. All rights reserved.
|
|
|
|
import re
|
|
import base64
|
|
import dataclasses
|
|
|
|
from PIL import Image
|
|
from io import BytesIO
|
|
from enum import auto, Enum
|
|
from typing import List, Any, Dict, Union, Tuple
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
class SeparatorStyle(Enum):
|
|
"""Different separator style."""
|
|
|
|
SINGLE = auto()
|
|
MPT = auto()
|
|
INSTELLA = auto()
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class Conversation:
|
|
r"""A class that keeps all conversation history."""
|
|
|
|
system: str
|
|
roles: List[str]
|
|
messages: List[List[str]]
|
|
offset: int
|
|
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
|
sep: str = "###"
|
|
sep2: str = None
|
|
version: str = "Unknown"
|
|
|
|
tokenizer_id: str = ""
|
|
tokenizer: Any = None
|
|
# Stop criteria (the default one is EOS token)
|
|
stop_str: Union[str, List[str]] = None
|
|
# Stops generation if meeting any token in this list
|
|
stop_token_ids: List[int] = None
|
|
|
|
skip_next: bool = False
|
|
|
|
def get_prompt(self):
|
|
"""
|
|
Generates a formatted prompt string based on the messages and separator style.
|
|
The function processes the messages stored in the instance, applies specific formatting rules
|
|
based on the separator style, and returns the resulting prompt string.
|
|
|
|
Returns:
|
|
`str`: The formatted prompt string.
|
|
|
|
Raises:
|
|
`ValueError`: If an invalid separator style is specified.
|
|
"""
|
|
|
|
messages = self.messages
|
|
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
|
messages = self.messages.copy()
|
|
init_role, init_msg = messages[0].copy()
|
|
init_msg = init_msg[0]
|
|
if "mmtag" in self.version:
|
|
init_msg = init_msg.replace("<image>", "").strip()
|
|
messages[0] = (init_role, init_msg)
|
|
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
|
messages.insert(1, (self.roles[1], "Received."))
|
|
elif not init_msg.startswith("<image>"):
|
|
init_msg = init_msg.replace("<image>", "").strip()
|
|
messages[0] = (init_role, "<image>\n" + init_msg)
|
|
else:
|
|
messages[0] = (init_role, init_msg)
|
|
|
|
if self.sep_style == SeparatorStyle.SINGLE:
|
|
ret = self.system + self.sep
|
|
for role, message in messages:
|
|
if message:
|
|
if type(message) is tuple:
|
|
message, _, _ = message
|
|
ret += role + ": " + message + self.sep
|
|
else:
|
|
ret += role + ":"
|
|
|
|
elif self.sep_style == SeparatorStyle.MPT:
|
|
ret = self.system + self.sep
|
|
for role, message in messages:
|
|
if message:
|
|
if type(message) is tuple:
|
|
message, _, _ = message
|
|
ret += role + message + self.sep
|
|
else:
|
|
ret += role
|
|
|
|
elif self.sep_style == SeparatorStyle.INSTELLA:
|
|
seps = [self.sep, self.sep2]
|
|
ret = "|||IP_ADDRESS|||"
|
|
for i, (role, message) in enumerate(messages):
|
|
if message:
|
|
if type(message) is tuple:
|
|
message, _, _ = message
|
|
if i % 2 == 1:
|
|
message = message.strip()
|
|
ret += role + message + seps[i % 2]
|
|
else:
|
|
ret += role
|
|
else:
|
|
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
|
|
return ret
|
|
|
|
def append_message(self, role, message):
|
|
self.messages.append([role, message])
|
|
|
|
def process_image(self, image: Union[str, Image.Image], image_process_mode: str, return_pil: bool=False, image_format: str="PNG")->Union[str, Image.Image]:
|
|
r"""
|
|
Processes an image according to the specified mode and returns either a PIL image or a base64 encoded string.
|
|
|
|
Args:
|
|
- image (Union[str, Image.Image]): The image to be processed. Can be a file path or a PIL Image object.
|
|
- image_process_mode (str): The mode of image processing. Options are "Pad", "Default", "Crop", or "Resize".
|
|
- return_pil (bool, optional): If True, returns a PIL Image object. If False, returns a base64 encoded string. Defaults to False.
|
|
- image_format (str, optional): The format to save the image in if returning a base64 encoded string. Defaults to "PNG".
|
|
|
|
Returns:
|
|
Union[str, Image.Image]: The processed image, either as a PIL Image object or a base64 encoded string.
|
|
|
|
Raises:
|
|
ValueError: If an invalid image_process_mode is provided.
|
|
"""
|
|
|
|
if image_process_mode == "Pad":
|
|
|
|
def expand2square(pil_img, background_color=(122, 116, 104)):
|
|
width, height = pil_img.size
|
|
if width == height:
|
|
return pil_img
|
|
elif width > height:
|
|
result = Image.new(pil_img.mode, (width, width), background_color)
|
|
result.paste(pil_img, (0, (width - height) // 2))
|
|
return result
|
|
else:
|
|
result = Image.new(pil_img.mode, (height, height), background_color)
|
|
result.paste(pil_img, ((height - width) // 2, 0))
|
|
return result
|
|
|
|
image = expand2square(image)
|
|
elif image_process_mode in ["Default", "Crop"]:
|
|
pass
|
|
elif image_process_mode == "Resize":
|
|
image = image.resize((336, 336))
|
|
else:
|
|
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
|
|
|
if type(image) is not Image.Image:
|
|
image = Image.open(image).convert("RGB")
|
|
|
|
max_hw, min_hw = max(image.size), min(image.size)
|
|
aspect_ratio = max_hw / min_hw
|
|
max_len, min_len = 672, 448
|
|
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
|
longest_edge = int(shortest_edge * aspect_ratio)
|
|
W, H = image.size
|
|
if H > W:
|
|
H, W = longest_edge, shortest_edge
|
|
else:
|
|
H, W = shortest_edge, longest_edge
|
|
image = image.resize((W, H))
|
|
if return_pil:
|
|
return image
|
|
else:
|
|
buffered = BytesIO()
|
|
image.save(buffered, format=image_format)
|
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
|
return img_b64_str
|
|
|
|
def get_images(self, return_pil: bool=False, return_path: bool=False) -> List[Union[str, Image.Image]]:
|
|
"""
|
|
Retrieve images from the conversation messages.
|
|
|
|
Args:
|
|
return_pil (bool): If True, return images as PIL objects. Defaults to False.
|
|
return_path (bool): If True, return the image file paths instead of processing them. Defaults to False.
|
|
|
|
Returns:
|
|
list: A list of images or image paths depending on the arguments.
|
|
"""
|
|
images = []
|
|
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
|
if i % 2 == 0:
|
|
if type(msg) is tuple:
|
|
msg, image, image_process_mode = msg
|
|
if type(image) != list:
|
|
image = [image]
|
|
for img in image:
|
|
if not return_path and self.is_image_file(img):
|
|
img = self.process_image(img, image_process_mode, return_pil=return_pil)
|
|
else:
|
|
images.append(img)
|
|
return images
|
|
|
|
def is_image_file(self, filename: str)->bool:
|
|
image_extensions = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"]
|
|
return any(filename.lower().endswith(ext) for ext in image_extensions)
|
|
|
|
def is_video_file(self, filename: str)->bool:
|
|
video_extensions = [".mp4", ".mov", ".avi", ".mkv", ".wmv", ".flv", ".mpeg", ".mpg"]
|
|
return any(filename.lower().endswith(ext) for ext in video_extensions)
|
|
|
|
def to_gradio_chatbot(self)->list:
|
|
ret = []
|
|
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
|
if i % 2 == 0:
|
|
if type(msg) is tuple:
|
|
msg, image, image_process_mode = msg
|
|
if type(image) != list:
|
|
image = [image]
|
|
if len(image) == 1:
|
|
msg = "<image>\n" + msg.replace("<image>", "").strip()
|
|
else:
|
|
msg = re.sub(r"(<image>)\n(?=<image>)", r"\1 ", msg)
|
|
|
|
img_str_list = []
|
|
for img in image:
|
|
if self.is_image_file(img):
|
|
img_b64_str = self.process_image(img, "Default", return_pil=False, image_format="JPEG")
|
|
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" style="max-width: 256px; max-height: 256px; width: auto; height: auto; object-fit: contain;"/>'
|
|
img_str_list.append(img_str)
|
|
elif self.is_video_file(img):
|
|
ret.append(((img,), None))
|
|
|
|
msg = msg.strip()
|
|
img_place_holder = ""
|
|
for img_str in img_str_list:
|
|
img_place_holder += f"{img_str}\n\n"
|
|
|
|
if len(img_str_list) > 0:
|
|
msg = f"{img_place_holder}\n\n{msg}"
|
|
|
|
if len(msg) > 0:
|
|
ret.append([msg, None])
|
|
else:
|
|
ret.append([msg, None])
|
|
else:
|
|
ret[-1][-1] = msg
|
|
return ret
|
|
|
|
def copy(self)->"Conversation":
|
|
return Conversation(system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version)
|
|
|
|
def dict(self)->Dict[str, Any]:
|
|
if len(self.get_images()) > 0:
|
|
return {
|
|
"system": self.system,
|
|
"roles": self.roles,
|
|
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
|
"offset": self.offset,
|
|
"sep": self.sep,
|
|
"sep2": self.sep2,
|
|
}
|
|
return {
|
|
"system": self.system,
|
|
"roles": self.roles,
|
|
"messages": self.messages,
|
|
"offset": self.offset,
|
|
"sep": self.sep,
|
|
"sep2": self.sep2,
|
|
}
|
|
|
|
|
|
conv_vicuna_v0 = Conversation(
|
|
system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
|
roles=("Human", "Assistant"),
|
|
messages=[
|
|
["Human", "What are the key differences between renewable and non-renewable energy sources?"],
|
|
[
|
|
"Assistant",
|
|
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
|
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
|
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
|
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
|
"renewable and non-renewable energy sources:\n"
|
|
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
|
"energy sources are finite and will eventually run out.\n"
|
|
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
|
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
|
"and other negative effects.\n"
|
|
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
|
"have lower operational costs than non-renewable sources.\n"
|
|
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
|
"locations than non-renewable sources.\n"
|
|
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
|
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
|
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
|
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n",
|
|
],
|
|
],
|
|
offset=2,
|
|
sep_style=SeparatorStyle.SINGLE,
|
|
sep="###",
|
|
)
|
|
|
|
conv_mpt = Conversation(
|
|
system="""<|im_start|>system
|
|
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
|
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
|
version="mpt",
|
|
messages=[],
|
|
offset=0,
|
|
sep_style=SeparatorStyle.MPT,
|
|
sep="<|im_end|>",
|
|
)
|
|
|
|
conv_instella = Conversation(
|
|
system="",
|
|
roles=("<|user|>\n", "<|assistant|>\n"),
|
|
version="instella",
|
|
messages=(),
|
|
offset=0,
|
|
sep_style=SeparatorStyle.INSTELLA,
|
|
sep="\n",
|
|
sep2='|||IP_ADDRESS|||\n'
|
|
)
|
|
|
|
|
|
default_conversation = conv_instella
|
|
conv_templates = {
|
|
"default": conv_instella,
|
|
"mpt": conv_mpt,
|
|
"instella": conv_instella,
|
|
}
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(default_conversation.get_prompt())
|