first commit

This commit is contained in:
xxl 2024-12-31 11:47:03 +08:00
parent 6f5b9e3145
commit 713dd2cd90
28 changed files with 5139 additions and 2 deletions

675
README.md
View File

@ -1,3 +1,674 @@
# InternVL2_5-8B_a14123014239023104738976
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
- OpenGVLab/InternViT-300M-448px-V2_5
- internlm/internlm2_5-7b-chat
base_model_relation: merge
language:
- multilingual
tags:
- internvl
- custom_code
---
InternVL2_5-8B
# InternVL2_5-8B
[\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
[\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
<div align="center">
<img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
</div>
## Introduction
We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)
## InternVL 2.5 Family
In the following table, we provide an overview of the InternVL 2.5 series.
| Model Name | Vision Part | Language Part | HF Link |
| :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
| InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
| InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
| InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
| InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
| InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
| InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
| InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
## Model Architecture
As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
## Training Strategy
### Dynamic High-Resolution for Multimodal Data
In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)
- For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
- For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
- For videos, each frame is resized to 448×448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
### Single Model Training Pipeline
The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)
- **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
- **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoders ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
- **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
### Progressive Scaling Strategy
We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/UoNUyS7ctN5pBxNv9KnzH.png)
Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokens—less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
### Training Enhancements
To improve real-world adaptability and performance, we introduce two key techniques:
- **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
- **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
### Data Organization
#### Dataset Configuration
In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)
- **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
- **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (2436) are used for multi-image or high-resolution data, lower values (612) for standard images, and 1 for videos.
- **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
#### Data Filtering Pipeline
During development, we found that LLMs are highly sensitive to data noise, with even small anomalies—like outliers or repetitive data—causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)
To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)
The pipeline includes two modules, for **pure-text data**, three key strategies are used:
1. **LLM-Based Quality Scoring**: Each sample is scored (010) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
For **multimodal data**, two strategies are used:
1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
#### Training Data
As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)
## Evaluation on Multimodal Capability
### Multimodal Reasoning and Mathematics
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)
### OCR, Chart, and Document Understanding
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)
### Multi-Image & Real-World Comprehension
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)
### Comprehensive Multimodal & Hallucination Evaluation
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)
### Visual Grounding
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)
### Multimodal Multilingual Understanding
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)
### Video Understanding
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/tcwH-i1qc8H16En-7AZ5M.png)
## Evaluation on Language Capability
Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)
## Quick Start
We provide an example code to run `InternVL2_5-8B` using `transformers`.
> Please use transformers>=4.37.2 to ensure the model works normally.
### Model Loading
#### 16-bit (bf16 / fp16)
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL2_5-8B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
```
#### BNB 8-bit Quantization
```python
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL2_5-8B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval()
```
#### Multiple GPUs
The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
```python
import math
import torch
from transformers import AutoTokenizer, AutoModel
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
num_layers = {
'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
path = "OpenGVLab/InternVL2_5-8B"
device_map = split_model('InternVL2_5-8B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
```
### Inference with Transformers
```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2_5-8B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (单图单轮对话)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (单图多轮对话)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (单图批处理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (视频多轮对话)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
```
#### Streaming Output
Besides this method, you can also use the following code to get streamed output.
```python
from transformers import TextIteratorStreamer
from threading import Thread
# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
history=None, return_history=False, generation_config=generation_config,
))
thread.start()
# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
if new_text == model.conv_template.sep:
break
generated_text += new_text
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
```
## Finetune
Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
## Deployment
### LMDeploy
LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
```sh
pip install lmdeploy>=0.6.4
```
LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
#### A 'Hello, world' Example
```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL2_5-8B'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
response = pipe(('describe this image', image))
print(response.text)
```
If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
#### Multi-images Inference
When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN
model = 'OpenGVLab/InternVL2_5-8B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
image_urls=[
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]
images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
```
#### Batch Prompts Inference
Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
```python
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL2_5-8B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
image_urls=[
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
```
#### Multi-turn Conversation
There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
```python
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL2_5-8B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
```
#### Service
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
```shell
lmdeploy serve api_server OpenGVLab/InternVL2_5-8B --server-port 23333
```
To use the OpenAI-style interface, you need to install OpenAI:
```shell
pip install openai
```
Then, use the code below to make the API call:
```python
from openai import OpenAI
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=[{
'role':
'user',
'content': [{
'type': 'text',
'text': 'describe this image',
}, {
'type': 'image_url',
'image_url': {
'url':
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
},
}],
}],
temperature=0.8,
top_p=0.8)
print(response)
```
## License
This project is released under the MIT License. This project uses the pre-trained internlm2_5-7b-chat as a component, which is licensed under the Apache License 2.0.
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}
```

11
added_tokens.json Normal file
View File

@ -0,0 +1,11 @@
{
"</box>": 92552,
"</img>": 92545,
"</quad>": 92548,
"</ref>": 92550,
"<IMG_CONTEXT>": 92546,
"<box>": 92551,
"<img>": 92544,
"<quad>": 92547,
"<ref>": 92549
}

145
config.json Normal file
View File

@ -0,0 +1,145 @@
{
"_commit_hash": null,
"architectures": [
"InternVLChatModel"
],
"auto_map": {
"AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
"AutoModel": "modeling_internvl_chat.InternVLChatModel",
"AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
},
"downsample_ratio": 0.5,
"dynamic_image_size": true,
"force_image_size": 448,
"llm_config": {
"_name_or_path": "internlm/internlm2_5-7b-chat",
"add_cross_attention": false,
"architectures": [
"InternLM2ForCausalLM"
],
"attn_implementation": "flash_attention_2",
"auto_map": {
"AutoConfig": "configuration_internlm2.InternLM2Config",
"AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
"AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
"AutoModelForSequenceClassification": "modeling_internlm2.InternLM2ForSequenceClassification"
},
"bad_words_ids": null,
"begin_suppress_tokens": null,
"bias": false,
"bos_token_id": 1,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": null,
"decoder_start_token_id": null,
"diversity_penalty": 0.0,
"do_sample": false,
"early_stopping": false,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"exponential_decay_length_penalty": null,
"finetuning_task": null,
"forced_bos_token_id": null,
"forced_eos_token_id": null,
"hidden_act": "silu",
"hidden_size": 4096,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1"
},
"initializer_range": 0.02,
"intermediate_size": 14336,
"is_decoder": false,
"is_encoder_decoder": false,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1
},
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 32768,
"min_length": 0,
"model_type": "internlm2",
"no_repeat_ngram_size": 0,
"num_attention_heads": 32,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"num_return_sequences": 1,
"output_attentions": false,
"output_hidden_states": false,
"output_scores": false,
"pad_token_id": 2,
"prefix": null,
"pretraining_tp": 1,
"problem_type": null,
"pruned_heads": {},
"remove_invalid_values": false,
"repetition_penalty": 1.0,
"return_dict": true,
"return_dict_in_generate": false,
"rms_norm_eps": 1e-05,
"rope_scaling": {
"factor": 2.0,
"type": "dynamic"
},
"rope_theta": 1000000,
"sep_token_id": null,
"suppress_tokens": null,
"task_specific_params": null,
"temperature": 1.0,
"tf_legacy_loss": false,
"tie_encoder_decoder": false,
"tie_word_embeddings": false,
"tokenizer_class": null,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": "bfloat16",
"torchscript": false,
"transformers_version": "4.37.2",
"typical_p": 1.0,
"use_bfloat16": true,
"use_cache": true,
"vocab_size": 92553
},
"max_dynamic_patch": 12,
"min_dynamic_patch": 1,
"model_type": "internvl_chat",
"ps_version": "v2",
"select_layer": -1,
"template": "internvl2_5",
"torch_dtype": "bfloat16",
"use_backbone_lora": 0,
"use_llm_lora": 0,
"use_thumbnail": true,
"vision_config": {
"architectures": [
"InternVisionModel"
],
"attention_dropout": 0.0,
"drop_path_rate": 0.0,
"dropout": 0.0,
"hidden_act": "gelu",
"hidden_size": 1024,
"image_size": 448,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-06,
"model_type": "intern_vit_6b",
"norm_type": "layer_norm",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"output_attentions": false,
"output_hidden_states": false,
"patch_size": 14,
"qk_normalization": false,
"qkv_bias": true,
"return_dict": true,
"torch_dtype": "bfloat16",
"transformers_version": "4.37.2",
"use_bfloat16": true,
"use_flash_attn": true
}
}

1
configuration.json Normal file
View File

@ -0,0 +1 @@
{"framework": "pytorch", "task": "image-text-to-text", "allow_remote": true}

120
configuration_intern_vit.py Normal file
View File

@ -0,0 +1,120 @@
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class InternVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
instantiate a vision encoder according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
Number of color channels in the input images (e.g., 3 for RGB).
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
qkv_bias (`bool`, *optional*, defaults to `False`):
Whether to add a bias to the queries and values in the self-attention layers.
hidden_size (`int`, *optional*, defaults to 3200):
Dimensionality of the encoder layers and the pooler layer.
num_attention_heads (`int`, *optional*, defaults to 25):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 12800):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
qk_normalization (`bool`, *optional*, defaults to `True`):
Whether to normalize the queries and keys in the self-attention layers.
num_hidden_layers (`int`, *optional*, defaults to 48):
Number of hidden layers in the Transformer encoder.
use_flash_attn (`bool`, *optional*, defaults to `True`):
Whether to use flash attention mechanism.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Dropout rate for stochastic depth.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 0.1):
A factor for layer scale.
"""
model_type = 'intern_vit_6b'
def __init__(
self,
num_channels=3,
patch_size=14,
image_size=224,
qkv_bias=False,
hidden_size=3200,
num_attention_heads=25,
intermediate_size=12800,
qk_normalization=True,
num_hidden_layers=48,
use_flash_attn=True,
hidden_act='gelu',
norm_type='rms_norm',
layer_norm_eps=1e-6,
dropout=0.0,
drop_path_rate=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=0.1,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.dropout = dropout
self.drop_path_rate = drop_path_rate
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.norm_type = norm_type
self.qkv_bias = qkv_bias
self.qk_normalization = qk_normalization
self.use_flash_attn = use_flash_attn
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if 'vision_config' in config_dict:
config_dict = config_dict['vision_config']
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
)
return cls.from_dict(config_dict, **kwargs)

150
configuration_internlm2.py Normal file
View File

@ -0,0 +1,150 @@
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/configuration_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" InternLM2 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
# Modified from transformers.model.llama.configuration_llama.LlamaConfig
class InternLM2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`InternLM2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
Example:
"""
model_type = 'internlm2'
_auto_class = 'AutoConfig'
def __init__( # pylint: disable=W0102
self,
vocab_size=103168,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act='silu',
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
bias=True,
rope_theta=10000,
rope_scaling=None,
attn_implementation='eager',
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.bias = bias
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_validation()
self.attn_implementation = attn_implementation
if self.attn_implementation is None:
self.attn_implementation = 'eager'
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
f'got {self.rope_scaling}'
)
rope_scaling_type = self.rope_scaling.get('type', None)
rope_scaling_factor = self.rope_scaling.get('factor', None)
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")

View File

@ -0,0 +1,96 @@
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import copy
from transformers import AutoConfig, LlamaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
from .configuration_internlm2 import InternLM2Config
logger = logging.get_logger(__name__)
class InternVLChatConfig(PretrainedConfig):
model_type = 'internvl_chat'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
use_backbone_lora=0,
use_llm_lora=0,
select_layer=-1,
force_image_size=None,
downsample_ratio=0.5,
template=None,
dynamic_image_size=False,
use_thumbnail=False,
ps_version='v1',
min_dynamic_patch=1,
max_dynamic_patch=6,
**kwargs):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {'architectures': ['InternVisionModel']}
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
if llm_config is None:
llm_config = {'architectures': ['InternLM2ForCausalLM']}
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
self.vision_config = InternVisionConfig(**vision_config)
if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
self.llm_config = LlamaConfig(**llm_config)
elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
self.llm_config = InternLM2Config(**llm_config)
else:
raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
self.use_backbone_lora = use_backbone_lora
self.use_llm_lora = use_llm_lora
self.select_layer = select_layer
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template
self.dynamic_image_size = dynamic_image_size
self.use_thumbnail = use_thumbnail
self.ps_version = ps_version # pixel shuffle version
self.min_dynamic_patch = min_dynamic_patch
self.max_dynamic_patch = max_dynamic_patch
logger.info(f'vision_select_layer: {self.select_layer}')
logger.info(f'ps_version: {self.ps_version}')
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output['vision_config'] = self.vision_config.to_dict()
output['llm_config'] = self.llm_config.to_dict()
output['model_type'] = self.__class__.model_type
output['use_backbone_lora'] = self.use_backbone_lora
output['use_llm_lora'] = self.use_llm_lora
output['select_layer'] = self.select_layer
output['force_image_size'] = self.force_image_size
output['downsample_ratio'] = self.downsample_ratio
output['template'] = self.template
output['dynamic_image_size'] = self.dynamic_image_size
output['use_thumbnail'] = self.use_thumbnail
output['ps_version'] = self.ps_version
output['min_dynamic_patch'] = self.min_dynamic_patch
output['max_dynamic_patch'] = self.max_dynamic_patch
return output

391
conversation.py Normal file
View File

@ -0,0 +1,391 @@
"""
Conversation prompt templates.
We kindly request that you import fastchat instead of copying this file if you wish to use it.
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
"""
import dataclasses
from enum import IntEnum, auto
from typing import Dict, List, Tuple, Union
class SeparatorStyle(IntEnum):
"""Separator styles."""
ADD_COLON_SINGLE = auto()
ADD_COLON_TWO = auto()
ADD_COLON_SPACE_SINGLE = auto()
NO_COLON_SINGLE = auto()
NO_COLON_TWO = auto()
ADD_NEW_LINE_SINGLE = auto()
LLAMA2 = auto()
CHATGLM = auto()
CHATML = auto()
CHATINTERN = auto()
DOLLY = auto()
RWKV = auto()
PHOENIX = auto()
ROBIN = auto()
FALCON_CHAT = auto()
CHATGLM3 = auto()
INTERNVL_ZH = auto()
MPT = auto()
@dataclasses.dataclass
class Conversation:
"""A class that manages prompt templates and keeps all conversation history."""
# The name of this template
name: str
# The template of the system prompt
system_template: str = '{system_message}'
# The system message
system_message: str = ''
# The names of two roles
roles: Tuple[str] = ('USER', 'ASSISTANT')
# All messages. Each item is (role, message).
messages: List[List[str]] = ()
# The number of few shot examples
offset: int = 0
# The separator style and configurations
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
sep: str = '\n'
sep2: str = None
# Stop criteria (the default one is EOS token)
stop_str: Union[str, List[str]] = None
# Stops generation if meeting any token in this list
stop_token_ids: List[int] = None
def get_prompt(self) -> str:
"""Get the prompt for generation."""
system_prompt = self.system_template.format(system_message=self.system_message)
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ': ' + message + self.sep
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ': ' + message + seps[i % 2]
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ': ' + message + self.sep
else:
ret += role + ': ' # must be end with a space
return ret
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
ret = '' if system_prompt == '' else system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + '\n' + message + self.sep
else:
ret += role + '\n'
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
ret = system_prompt
for role, message in self.messages:
if message:
ret += role + message + self.sep
else:
ret += role
return ret
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
seps = [self.sep, self.sep2]
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + message + seps[i % 2]
else:
ret += role
return ret
elif self.sep_style == SeparatorStyle.RWKV:
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
if message:
ret += (
role
+ ': '
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
)
ret += '\n\n'
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.LLAMA2:
seps = [self.sep, self.sep2]
if self.system_message:
ret = system_prompt
else:
ret = '[INST] '
for i, (role, message) in enumerate(self.messages):
tag = self.roles[i % 2]
if message:
if i == 0:
ret += message + ' '
else:
ret += tag + ' ' + message + seps[i % 2]
else:
ret += tag
return ret
elif self.sep_style == SeparatorStyle.CHATGLM:
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
round_add_n = 1 if self.name == 'chatglm2' else 0
if system_prompt:
ret = system_prompt + self.sep
else:
ret = ''
for i, (role, message) in enumerate(self.messages):
if i % 2 == 0:
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
if message:
ret += f'{role}{message}{self.sep}'
else:
ret += f'{role}'
return ret
elif self.sep_style == SeparatorStyle.CHATML:
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
for role, message in self.messages:
if message:
ret += role + '\n' + message + self.sep + '\n'
else:
ret += role + '\n'
return ret
elif self.sep_style == SeparatorStyle.CHATGLM3:
ret = ''
if self.system_message:
ret += system_prompt
for role, message in self.messages:
if message:
ret += role + '\n' + ' ' + message
else:
ret += role
return ret
elif self.sep_style == SeparatorStyle.CHATINTERN:
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
seps = [self.sep, self.sep2]
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
# if i % 2 == 0:
# ret += "<s>"
if message:
ret += role + ':' + message + seps[i % 2] + '\n'
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.DOLLY:
seps = [self.sep, self.sep2]
ret = system_prompt
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ':\n' + message + seps[i % 2]
if i % 2 == 1:
ret += '\n\n'
else:
ret += role + ':\n'
return ret
elif self.sep_style == SeparatorStyle.PHOENIX:
ret = system_prompt
for role, message in self.messages:
if message:
ret += role + ': ' + '<s>' + message + '</s>'
else:
ret += role + ': ' + '<s>'
return ret
elif self.sep_style == SeparatorStyle.ROBIN:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ':\n' + message + self.sep
else:
ret += role + ':\n'
return ret
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
ret = ''
if self.system_message:
ret += system_prompt + self.sep
for role, message in self.messages:
if message:
ret += role + ': ' + message + self.sep
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
seps = [self.sep, self.sep2]
ret = self.system_message + seps[0]
for i, (role, message) in enumerate(self.messages):
if message:
ret += role + ': ' + message + seps[i % 2]
else:
ret += role + ':'
return ret
elif self.sep_style == SeparatorStyle.MPT:
ret = system_prompt + self.sep
for role, message in self.messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + message + self.sep
else:
ret += role
return ret
else:
raise ValueError(f'Invalid style: {self.sep_style}')
def set_system_message(self, system_message: str):
"""Set the system message."""
self.system_message = system_message
def append_message(self, role: str, message: str):
"""Append a new message."""
self.messages.append([role, message])
def update_last_message(self, message: str):
"""Update the last output.
The last message is typically set to be None when constructing the prompt,
so we need to update it in-place after getting the response from a model.
"""
self.messages[-1][1] = message
def to_gradio_chatbot(self):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_openai_api_messages(self):
"""Convert the conversation to OpenAI chat completion format."""
ret = [{'role': 'system', 'content': self.system_message}]
for i, (_, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
ret.append({'role': 'user', 'content': msg})
else:
if msg is not None:
ret.append({'role': 'assistant', 'content': msg})
return ret
def copy(self):
return Conversation(
name=self.name,
system_template=self.system_template,
system_message=self.system_message,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
stop_str=self.stop_str,
stop_token_ids=self.stop_token_ids,
)
def dict(self):
return {
'template_name': self.name,
'system_message': self.system_message,
'roles': self.roles,
'messages': self.messages,
'offset': self.offset,
}
# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}
def register_conv_template(template: Conversation, override: bool = False):
"""Register a new conversation template."""
if not override:
assert (
template.name not in conv_templates
), f'{template.name} has been registered.'
conv_templates[template.name] = template
def get_conv_template(name: str) -> Conversation:
"""Get a conversation template."""
return conv_templates[name].copy()
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
# Therefore, they are completely equivalent during inference.
register_conv_template(
Conversation(
name='Hermes-2',
system_template='<|im_start|>system\n{system_message}',
# note: The new system prompt was not used here to avoid changes in benchmark performance.
# system_message='我是书生·万象英文名是InternVL是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型英文名叫InternVL, 是一个有用无害的人工智能助手。',
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
sep_style=SeparatorStyle.MPT,
sep='<|im_end|>',
stop_str='<|endoftext|>',
)
)
register_conv_template(
Conversation(
name='internlm2-chat',
system_template='<|im_start|>system\n{system_message}',
# note: The new system prompt was not used here to avoid changes in benchmark performance.
# system_message='我是书生·万象英文名是InternVL是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型英文名叫InternVL, 是一个有用无害的人工智能助手。',
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
sep_style=SeparatorStyle.MPT,
sep='<|im_end|>',
)
)
register_conv_template(
Conversation(
name='phi3-chat',
system_template='<|system|>\n{system_message}',
# note: The new system prompt was not used here to avoid changes in benchmark performance.
# system_message='我是书生·万象英文名是InternVL是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型英文名叫InternVL, 是一个有用无害的人工智能助手。',
roles=('<|user|>\n', '<|assistant|>\n'),
sep_style=SeparatorStyle.MPT,
sep='<|end|>',
)
)
register_conv_template(
Conversation(
name='internvl2_5',
system_template='<|im_start|>system\n{system_message}',
system_message='你是书生·万象英文名是InternVL是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
sep_style=SeparatorStyle.MPT,
sep='<|im_end|>\n',
)
)

61
eval_llm_benchmark.log Normal file

File diff suppressed because one or more lines are too long

BIN
examples/image1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

BIN
examples/image2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

BIN
examples/red-panda.mp4 Normal file

Binary file not shown.

8
generation_config.json Normal file
View File

@ -0,0 +1,8 @@
{
"_from_model_config": true,
"transformers_version": "4.37.2",
"eos_token_id": [
92542,
92543
]
}

BIN
model-00001-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00002-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00003-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

BIN
model-00004-of-00004.safetensors (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -0,0 +1,580 @@
{
"metadata": {
"total_size": 16150730752
},
"weight_map": {
"language_model.model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.10.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.19.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.19.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.19.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.19.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.20.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.21.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.22.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.23.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.24.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.30.attention_norm.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.30.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
"language_model.model.layers.30.ffn_norm.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.attention.wo.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.attention.wqkv.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.attention_norm.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.31.ffn_norm.weight": "model-00004-of-00004.safetensors",
"language_model.model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors",
"language_model.model.layers.8.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.8.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.8.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.8.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.8.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.attention.wo.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.attention.wqkv.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.attention_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
"language_model.model.layers.9.ffn_norm.weight": "model-00002-of-00004.safetensors",
"language_model.model.norm.weight": "model-00004-of-00004.safetensors",
"language_model.model.tok_embeddings.weight": "model-00001-of-00004.safetensors",
"language_model.output.weight": "model-00004-of-00004.safetensors",
"mlp1.0.bias": "model-00004-of-00004.safetensors",
"mlp1.0.weight": "model-00004-of-00004.safetensors",
"mlp1.1.bias": "model-00004-of-00004.safetensors",
"mlp1.1.weight": "model-00004-of-00004.safetensors",
"mlp1.3.bias": "model-00004-of-00004.safetensors",
"mlp1.3.weight": "model-00004-of-00004.safetensors",
"vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
"vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
"vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
"vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
"vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
}
}

430
modeling_intern_vit.py Normal file
View File

@ -0,0 +1,430 @@
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from timm.models.layers import DropPath
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutput,
BaseModelOutputWithPooling)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_intern_vit import InternVisionConfig
try:
from flash_attn.bert_padding import pad_input, unpad_input
from flash_attn.flash_attn_interface import \
flash_attn_varlen_qkvpacked_func
has_flash_attn = True
except:
print('FlashAttention2 is not installed.')
has_flash_attn = False
logger = logging.get_logger(__name__)
class FlashAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_scale: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.0)
"""
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
super().__init__()
self.softmax_scale = softmax_scale
self.dropout_p = attention_dropout
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
max_s=None, need_weights=False):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
if unpadded: (nnz, 3, h, d)
key_padding_mask: a bool tensor of shape (B, S)
"""
assert not need_weights
assert qkv.dtype in [torch.float16, torch.bfloat16]
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
if key_padding_mask is None:
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
max_s = seqlen
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
device=qkv.device)
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
else:
nheads = qkv.shape[-2]
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
output_unpad = flash_attn_varlen_qkvpacked_func(
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
indices, batch_size, seqlen),
'b s (h d) -> b s h d', h=nheads)
else:
assert max_s is not None
output = flash_attn_varlen_qkvpacked_func(
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
softmax_scale=self.softmax_scale, causal=causal
)
return output, None
class InternRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
try:
from apex.normalization import FusedRMSNorm
InternRMSNorm = FusedRMSNorm # noqa
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
except ImportError:
# using the normal InternRMSNorm
pass
except Exception:
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
pass
NORM2FN = {
'rms_norm': InternRMSNorm,
'layer_norm': nn.LayerNorm,
}
class InternVisionEmbeddings(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(
torch.randn(1, 1, self.embed_dim),
)
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
def _get_pos_embed(self, pos_embed, H, W):
target_dtype = pos_embed.dtype
pos_embed = pos_embed.float().reshape(
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
return pos_embed
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
batch_size, _, height, width = patch_embeds.shape
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
position_embedding = torch.cat([
self.position_embedding[:, :1, :],
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
], dim=1)
embeddings = embeddings + position_embedding.to(target_dtype)
return embeddings
class InternAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_flash_attn = config.use_flash_attn and has_flash_attn
if config.use_flash_attn and not has_flash_attn:
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
f' {self.num_heads}).'
)
self.scale = self.head_dim ** -0.5
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attention_dropout)
self.proj_drop = nn.Dropout(config.dropout)
self.qk_normalization = config.qk_normalization
if self.qk_normalization:
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
if self.use_flash_attn:
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
def _naive_attn(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
if self.qk_normalization:
B_, H_, N_, D_ = q.shape
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
attn = ((q * self.scale) @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
qkv = self.qkv(x)
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
if self.qk_normalization:
q, k, v = qkv.unbind(2)
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
qkv = torch.stack([q, k, v], dim=2)
context, _ = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
)
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
outs = self.proj_drop(outs)
return outs
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
return x
class InternMLP(nn.Module):
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
self.act = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class InternVisionEncoderLayer(nn.Module):
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
super().__init__()
self.embed_dim = config.hidden_size
self.intermediate_size = config.intermediate_size
self.norm_type = config.norm_type
self.attn = InternAttention(config)
self.mlp = InternMLP(config)
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(
self,
hidden_states: torch.Tensor,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
"""
Args:
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
"""
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
return hidden_states
class InternVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`InternEncoderLayer`].
Args:
config (`InternConfig`):
The corresponding vision configuration for the `InternEncoder`.
"""
def __init__(self, config: InternVisionConfig):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.layers = nn.ModuleList([
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = True
def forward(
self,
inputs_embeds,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = torch.utils.checkpoint.checkpoint(
encoder_layer,
hidden_states)
else:
layer_outputs = encoder_layer(
hidden_states,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states
)
class InternVisionModel(PreTrainedModel):
main_input_name = 'pixel_values'
_supports_flash_attn_2 = True
config_class = InternVisionConfig
_no_split_modules = ['InternVisionEncoderLayer']
def __init__(self, config: InternVisionConfig):
super().__init__(config)
self.config = config
self.embeddings = InternVisionEmbeddings(config)
self.encoder = InternVisionEncoder(config)
def resize_pos_embeddings(self, old_size, new_size, patch_size):
pos_emb = self.embeddings.position_embedding
_, num_positions, embed_dim = pos_emb.shape
cls_emb = pos_emb[:, :1, :]
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
self.embeddings.position_embedding = nn.Parameter(pos_emb)
self.embeddings.image_size = new_size
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
def get_input_embeddings(self):
return self.embeddings
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_embeds: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None and pixel_embeds is None:
raise ValueError('You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
else:
if len(pixel_values.shape) == 4:
hidden_states = self.embeddings(pixel_values)
else:
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

1415
modeling_internlm2.py Normal file

File diff suppressed because it is too large Load Diff

349
modeling_internvl_chat.py Normal file
View File

@ -0,0 +1,349 @@
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import List, Optional, Tuple, Union
import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
LlamaTokenizer)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_intern_vit import InternVisionModel, has_flash_attn
from .modeling_internlm2 import InternLM2ForCausalLM
logger = logging.get_logger(__name__)
def version_cmp(v1, v2, op='eq'):
import operator
from packaging import version
op_func = getattr(operator, op)
return op_func(version.parse(v1), version.parse(v2))
class InternVLChatModel(PreTrainedModel):
config_class = InternVLChatConfig
main_input_name = 'pixel_values'
base_model_prefix = 'language_model'
_supports_flash_attn_2 = True
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
super().__init__(config)
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
image_size = config.force_image_size or config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.patch_size = patch_size
self.select_layer = config.select_layer
self.template = config.template
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
use_flash_attn = use_flash_attn if has_flash_attn else False
config.vision_config.use_flash_attn = True if use_flash_attn else False
config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
logger.info(f'num_image_token: {self.num_image_token}')
logger.info(f'ps_version: {self.ps_version}')
if vision_model is not None:
self.vision_model = vision_model
else:
self.vision_model = InternVisionModel(config.vision_config)
if language_model is not None:
self.language_model = language_model
else:
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
self.language_model = LlamaForCausalLM(config.llm_config)
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
self.language_model = InternLM2ForCausalLM(config.llm_config)
else:
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
vit_hidden_size = config.vision_config.hidden_size
llm_hidden_size = config.llm_config.hidden_size
self.mlp1 = nn.Sequential(
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
nn.GELU(),
nn.Linear(llm_hidden_size, llm_hidden_size)
)
self.img_context_token_id = None
self.conv_template = get_conv_template(self.template)
self.system_message = self.conv_template.system_message
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
image_flags: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
image_flags = image_flags.squeeze(-1)
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
vit_embeds = self.extract_feature(pixel_values)
vit_embeds = vit_embeds[image_flags == 1]
vit_batch_size = pixel_values.shape[0]
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
try:
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
except Exception as e:
vit_embeds = vit_embeds.reshape(-1, C)
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
f'vit_embeds.shape={vit_embeds.shape}')
n_token = selected.sum()
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs.logits
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
if self.ps_version == 'v1':
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
'which results in a transposed image.')
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
if self.select_layer == -1:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=False,
return_dict=True).last_hidden_state
else:
vit_embeds = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=True,
return_dict=True).hidden_states[self.select_layer]
vit_embeds = vit_embeds[:, 1:, :]
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
vit_embeds = self.mlp1(vit_embeds)
return vit_embeds
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
if history is not None or return_history:
print('Now multi-turn chat is not supported in batch_chat.')
raise NotImplementedError
if image_counts is not None:
num_patches_list = image_counts
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
queries = []
for idx, num_patches in enumerate(num_patches_list):
question = questions[idx]
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
template = get_conv_template(self.template)
template.system_message = self.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
queries.append(query)
tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
return responses
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
verbose=False):
if history is None and pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
self.img_context_token_id = img_context_token_id
template = get_conv_template(self.template)
template.system_message = self.system_message
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
history = [] if history is None else history
for (old_question, old_answer) in history:
template.append_message(template.roles[0], old_question)
template.append_message(template.roles[1], old_answer)
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
if verbose and pixel_values is not None:
image_bs = pixel_values.shape[0]
print(f'dynamic ViT batch size: {image_bs}')
for num_patches in num_patches_list:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
query = query.replace('<image>', image_tokens, 1)
model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
generation_config['eos_token_id'] = eos_token_id
generation_output = self.generate(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
**generation_config
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
response = response.split(template.sep.strip())[0].strip()
history.append((question, response))
if return_history:
return response, history
else:
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
if verbose:
print(query_to_print, response)
return response
@torch.no_grad()
def generate(
self,
pixel_values: Optional[torch.FloatTensor] = None,
input_ids: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
visual_features: Optional[torch.FloatTensor] = None,
generation_config: Optional[GenerationConfig] = None,
output_hidden_states: Optional[bool] = None,
**generate_kwargs,
) -> torch.LongTensor:
assert self.img_context_token_id is not None
if pixel_values is not None:
if visual_features is not None:
vit_embeds = visual_features
else:
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
else:
input_embeds = self.language_model.get_input_embeddings()(input_ids)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
use_cache=True,
**generate_kwargs,
)
return outputs

19
preprocessor_config.json Normal file
View File

@ -0,0 +1,19 @@
{
"crop_size": 448,
"do_center_crop": true,
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.485,
0.456,
0.406
],
"image_std": [
0.229,
0.224,
0.225
],
"resample": 3,
"size": 448
}

47
special_tokens_map.json Normal file
View File

@ -0,0 +1,47 @@
{
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<img>",
"</img>",
"<IMG_CONTEXT>",
"<quad>",
"</quad>",
"<ref>",
"</ref>",
"<box>",
"</box>"
],
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

235
tokenization_internlm2.py Normal file
View File

@ -0,0 +1,235 @@
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
PRETRAINED_VOCAB_FILES_MAP = {}
# Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
class InternLM2Tokenizer(PreTrainedTokenizer):
"""
Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
model_input_names = ['input_ids', 'attention_mask']
_auto_class = 'AutoTokenizer'
def __init__(
self,
vocab_file,
unk_token='<unk>',
bos_token='<s>',
eos_token='</s>',
pad_token='</s>',
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.decode_with_prefix_space = decode_with_prefix_space
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
self._no_prefix_space_tokens = None
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def no_prefix_space_tokens(self):
if self._no_prefix_space_tokens is None:
vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('')}
return self._no_prefix_space_tokens
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
@property
def bos_token_id(self) -> Optional[int]:
return self.sp_model.bos_id()
@property
def eos_token_id(self) -> Optional[int]:
return self.sp_model.eos_id()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
"""Returns a tokenized string."""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def _maybe_add_prefix_space(self, tokens, decoded):
if tokens and tokens[0] not in self.no_prefix_space_tokens:
return ' ' + decoded
else:
return decoded
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ''
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += ' '
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
out_string = self.clean_up_tokenization(out_string)
out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
return out_string[1:]
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, 'wb') as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is not None:
output = output + token_ids_1
if self.add_eos_token:
output = output + [self.eos_token_id]
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]

View File

@ -0,0 +1,211 @@
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization Fast class for InternLM."""
import os
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple
from tokenizers import Tokenizer, decoders, normalizers, processors
from tokenizers.models import BPE
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
SentencePieceExtractor,
SpmConverter)
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from .tokenization_internlm2 import InternLM2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
# Modified from transformers.convert_slow_tokenizer.LlamaConverter
class InternLM2Converter(SpmConverter):
handle_byte_fallback = True
def vocab(self, proto):
vocab = [
('<unk>', 0.0),
('<s>', 0.0),
('</s>', 0.0),
]
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
return vocab
def unk_id(self, proto):
unk_id = 0
return unk_id
def decoder(self, replacement, add_prefix_space):
return decoders.Sequence(
[
decoders.Replace('', ' '),
decoders.ByteFallback(),
decoders.Fuse(),
decoders.Strip(content=' ', left=1),
]
)
def tokenizer(self, proto):
model_type = proto.trainer_spec.model_type
vocab_scores = self.vocab(proto)
# special tokens
added_tokens = self.original_tokenizer.added_tokens_decoder
for i in range(len(vocab_scores)):
piece, score = vocab_scores[i]
if i in added_tokens:
vocab_scores[i] = (added_tokens[i].content, score)
if model_type == 1:
raise RuntimeError('InternLM2 is supposed to be a BPE model!')
elif model_type == 2:
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
tokenizer = Tokenizer(
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
)
tokenizer.add_special_tokens(
[ added_token for index, added_token in added_tokens.items()]
)
else:
raise Exception(
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
)
return tokenizer
def normalizer(self, proto):
normalizers_list = []
if proto.normalizer_spec.add_dummy_prefix:
normalizers_list.append(normalizers.Prepend(prepend=''))
normalizers_list.append(normalizers.Replace(pattern=' ', content=''))
return normalizers.Sequence(normalizers_list)
def pre_tokenizer(self, replacement, add_prefix_space):
return None
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
class InternLM2TokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = InternLM2Tokenizer
padding_side = 'left'
model_input_names = ['input_ids', 'attention_mask']
_auto_class = 'AutoTokenizer'
def __init__(
self,
vocab_file,
unk_token='<unk>',
bos_token='<s>',
eos_token='</s>',
pad_token='</s>',
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
decode_with_prefix_space=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
sp_model_kwargs=sp_model_kwargs,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
decode_with_prefix_space=decode_with_prefix_space,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError('add_bos_token = True but bos_token = None')
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError('add_eos_token = True but eos_token = None')
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.'
)
if not os.path.isdir(save_directory):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)

BIN
tokenizer.model (Stored with Git LFS) Normal file

Binary file not shown.

179
tokenizer_config.json Normal file
View File

@ -0,0 +1,179 @@
{
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "<s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92538": {
"content": "<|plugin|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92539": {
"content": "<|interpreter|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92540": {
"content": "<|action_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92541": {
"content": "<|action_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92542": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92543": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92544": {
"content": "<img>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92545": {
"content": "</img>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92546": {
"content": "<IMG_CONTEXT>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92547": {
"content": "<quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92548": {
"content": "</quad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92549": {
"content": "<ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92550": {
"content": "</ref>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92551": {
"content": "<box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"92552": {
"content": "</box>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|action_start|>",
"<|action_end|>",
"<|interpreter|>",
"<|plugin|>",
"<img>",
"</img>",
"<IMG_CONTEXT>",
"<quad>",
"</quad>",
"<ref>",
"</ref>",
"<box>",
"</box>"
],
"auto_map": {
"AutoTokenizer": [
"tokenization_internlm2.InternLM2Tokenizer",
null
]
},
"bos_token": "<s>",
"chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
"clean_up_tokenization_spaces": false,
"eos_token": "</s>",
"model_max_length": 16384,
"pad_token": "</s>",
"tokenizer_class": "InternLM2Tokenizer",
"unk_token": "<unk>"
}