524 lines
21 KiB
Python
524 lines
21 KiB
Python
|
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
||
|
from scipy.signal import get_window
|
||
|
from torch.nn import Conv1d, ConvTranspose1d
|
||
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
||
|
def init_weights(m, mean=0.0, std=0.01):
|
||
|
classname = m.__class__.__name__
|
||
|
if classname.find("Conv") != -1:
|
||
|
m.weight.data.normal_(mean, std)
|
||
|
|
||
|
def get_padding(kernel_size, dilation=1):
|
||
|
return int((kernel_size*dilation - dilation)/2)
|
||
|
|
||
|
LRELU_SLOPE = 0.1
|
||
|
|
||
|
class AdaIN1d(nn.Module):
|
||
|
def __init__(self, style_dim, num_features):
|
||
|
super().__init__()
|
||
|
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
||
|
self.fc = nn.Linear(style_dim, num_features*2)
|
||
|
|
||
|
def forward(self, x, s):
|
||
|
h = self.fc(s)
|
||
|
h = h.view(h.size(0), h.size(1), 1)
|
||
|
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
||
|
return (1 + gamma) * self.norm(x) + beta
|
||
|
|
||
|
class AdaINResBlock1(torch.nn.Module):
|
||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
||
|
super(AdaINResBlock1, self).__init__()
|
||
|
self.convs1 = nn.ModuleList([
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||
|
padding=get_padding(kernel_size, dilation[0]))),
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||
|
padding=get_padding(kernel_size, dilation[1]))),
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||
|
padding=get_padding(kernel_size, dilation[2])))
|
||
|
])
|
||
|
self.convs1.apply(init_weights)
|
||
|
|
||
|
self.convs2 = nn.ModuleList([
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
|
padding=get_padding(kernel_size, 1))),
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
|
padding=get_padding(kernel_size, 1))),
|
||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||
|
padding=get_padding(kernel_size, 1)))
|
||
|
])
|
||
|
self.convs2.apply(init_weights)
|
||
|
|
||
|
self.adain1 = nn.ModuleList([
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
])
|
||
|
|
||
|
self.adain2 = nn.ModuleList([
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
AdaIN1d(style_dim, channels),
|
||
|
])
|
||
|
|
||
|
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
||
|
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
||
|
|
||
|
|
||
|
def forward(self, x, s):
|
||
|
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
||
|
xt = n1(x, s)
|
||
|
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
||
|
xt = c1(xt)
|
||
|
xt = n2(xt, s)
|
||
|
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
||
|
xt = c2(xt)
|
||
|
x = xt + x
|
||
|
return x
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
for l in self.convs1:
|
||
|
remove_weight_norm(l)
|
||
|
for l in self.convs2:
|
||
|
remove_weight_norm(l)
|
||
|
|
||
|
class TorchSTFT(torch.nn.Module):
|
||
|
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
||
|
super().__init__()
|
||
|
self.filter_length = filter_length
|
||
|
self.hop_length = hop_length
|
||
|
self.win_length = win_length
|
||
|
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
||
|
|
||
|
def transform(self, input_data):
|
||
|
forward_transform = torch.stft(
|
||
|
input_data,
|
||
|
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
||
|
return_complex=True)
|
||
|
|
||
|
return torch.abs(forward_transform), torch.angle(forward_transform)
|
||
|
|
||
|
def inverse(self, magnitude, phase):
|
||
|
inverse_transform = torch.istft(
|
||
|
magnitude * torch.exp(phase * 1j),
|
||
|
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
||
|
|
||
|
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
||
|
|
||
|
def forward(self, input_data):
|
||
|
self.magnitude, self.phase = self.transform(input_data)
|
||
|
reconstruction = self.inverse(self.magnitude, self.phase)
|
||
|
return reconstruction
|
||
|
|
||
|
class SineGen(torch.nn.Module):
|
||
|
""" Definition of sine generator
|
||
|
SineGen(samp_rate, harmonic_num = 0,
|
||
|
sine_amp = 0.1, noise_std = 0.003,
|
||
|
voiced_threshold = 0,
|
||
|
flag_for_pulse=False)
|
||
|
samp_rate: sampling rate in Hz
|
||
|
harmonic_num: number of harmonic overtones (default 0)
|
||
|
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||
|
noise_std: std of Gaussian noise (default 0.003)
|
||
|
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||
|
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||
|
Note: when flag_for_pulse is True, the first time step of a voiced
|
||
|
segment is always sin(np.pi) or cos(0)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||
|
sine_amp=0.1, noise_std=0.003,
|
||
|
voiced_threshold=0,
|
||
|
flag_for_pulse=False):
|
||
|
super(SineGen, self).__init__()
|
||
|
self.sine_amp = sine_amp
|
||
|
self.noise_std = noise_std
|
||
|
self.harmonic_num = harmonic_num
|
||
|
self.dim = self.harmonic_num + 1
|
||
|
self.sampling_rate = samp_rate
|
||
|
self.voiced_threshold = voiced_threshold
|
||
|
self.flag_for_pulse = flag_for_pulse
|
||
|
self.upsample_scale = upsample_scale
|
||
|
|
||
|
def _f02uv(self, f0):
|
||
|
# generate uv signal
|
||
|
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||
|
return uv
|
||
|
|
||
|
def _f02sine(self, f0_values):
|
||
|
""" f0_values: (batchsize, length, dim)
|
||
|
where dim indicates fundamental tone and overtones
|
||
|
"""
|
||
|
# convert to F0 in rad. The interger part n can be ignored
|
||
|
# because 2 * np.pi * n doesn't affect phase
|
||
|
rad_values = (f0_values / self.sampling_rate) % 1
|
||
|
|
||
|
# initial phase noise (no noise for fundamental component)
|
||
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
||
|
device=f0_values.device)
|
||
|
rand_ini[:, 0] = 0
|
||
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||
|
|
||
|
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||
|
if not self.flag_for_pulse:
|
||
|
# # for normal case
|
||
|
|
||
|
# # To prevent torch.cumsum numerical overflow,
|
||
|
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
||
|
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
||
|
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
||
|
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||
|
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||
|
# cumsum_shift = torch.zeros_like(rad_values)
|
||
|
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||
|
|
||
|
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||
|
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||
|
scale_factor=1/self.upsample_scale,
|
||
|
mode="linear").transpose(1, 2)
|
||
|
|
||
|
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
||
|
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
||
|
# cumsum_shift = torch.zeros_like(rad_values)
|
||
|
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||
|
|
||
|
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||
|
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||
|
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||
|
sines = torch.sin(phase)
|
||
|
|
||
|
else:
|
||
|
# If necessary, make sure that the first time step of every
|
||
|
# voiced segments is sin(pi) or cos(0)
|
||
|
# This is used for pulse-train generation
|
||
|
|
||
|
# identify the last time step in unvoiced segments
|
||
|
uv = self._f02uv(f0_values)
|
||
|
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||
|
uv_1[:, -1, :] = 1
|
||
|
u_loc = (uv < 1) * (uv_1 > 0)
|
||
|
|
||
|
# get the instantanouse phase
|
||
|
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||
|
# different batch needs to be processed differently
|
||
|
for idx in range(f0_values.shape[0]):
|
||
|
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||
|
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||
|
# stores the accumulation of i.phase within
|
||
|
# each voiced segments
|
||
|
tmp_cumsum[idx, :, :] = 0
|
||
|
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||
|
|
||
|
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||
|
# within the previous voiced segment.
|
||
|
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||
|
|
||
|
# get the sines
|
||
|
sines = torch.cos(i_phase * 2 * np.pi)
|
||
|
return sines
|
||
|
|
||
|
def forward(self, f0):
|
||
|
""" sine_tensor, uv = forward(f0)
|
||
|
input F0: tensor(batchsize=1, length, dim=1)
|
||
|
f0 for unvoiced steps should be 0
|
||
|
output sine_tensor: tensor(batchsize=1, length, dim)
|
||
|
output uv: tensor(batchsize=1, length, 1)
|
||
|
"""
|
||
|
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
||
|
device=f0.device)
|
||
|
# fundamental component
|
||
|
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||
|
|
||
|
# generate sine waveforms
|
||
|
sine_waves = self._f02sine(fn) * self.sine_amp
|
||
|
|
||
|
# generate uv signal
|
||
|
# uv = torch.ones(f0.shape)
|
||
|
# uv = uv * (f0 > self.voiced_threshold)
|
||
|
uv = self._f02uv(f0)
|
||
|
|
||
|
# noise: for unvoiced should be similar to sine_amp
|
||
|
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||
|
# . for voiced regions is self.noise_std
|
||
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||
|
noise = noise_amp * torch.randn_like(sine_waves)
|
||
|
|
||
|
# first: set the unvoiced part to 0 by uv
|
||
|
# then: additive noise
|
||
|
sine_waves = sine_waves * uv + noise
|
||
|
return sine_waves, uv, noise
|
||
|
|
||
|
|
||
|
class SourceModuleHnNSF(torch.nn.Module):
|
||
|
""" SourceModule for hn-nsf
|
||
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||
|
add_noise_std=0.003, voiced_threshod=0)
|
||
|
sampling_rate: sampling_rate in Hz
|
||
|
harmonic_num: number of harmonic above F0 (default: 0)
|
||
|
sine_amp: amplitude of sine source signal (default: 0.1)
|
||
|
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||
|
note that amplitude of noise in unvoiced is decided
|
||
|
by sine_amp
|
||
|
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||
|
F0_sampled (batchsize, length, 1)
|
||
|
Sine_source (batchsize, length, 1)
|
||
|
noise_source (batchsize, length 1)
|
||
|
uv (batchsize, length, 1)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||
|
add_noise_std=0.003, voiced_threshod=0):
|
||
|
super(SourceModuleHnNSF, self).__init__()
|
||
|
|
||
|
self.sine_amp = sine_amp
|
||
|
self.noise_std = add_noise_std
|
||
|
|
||
|
# to produce sine waveforms
|
||
|
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
||
|
sine_amp, add_noise_std, voiced_threshod)
|
||
|
|
||
|
# to merge source harmonics into a single excitation
|
||
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||
|
self.l_tanh = torch.nn.Tanh()
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||
|
F0_sampled (batchsize, length, 1)
|
||
|
Sine_source (batchsize, length, 1)
|
||
|
noise_source (batchsize, length 1)
|
||
|
"""
|
||
|
# source for harmonic branch
|
||
|
with torch.no_grad():
|
||
|
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||
|
|
||
|
# source for noise branch, in the same shape as uv
|
||
|
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||
|
return sine_merge, noise, uv
|
||
|
def padDiff(x):
|
||
|
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
||
|
|
||
|
|
||
|
class Generator(torch.nn.Module):
|
||
|
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
||
|
super(Generator, self).__init__()
|
||
|
|
||
|
self.num_kernels = len(resblock_kernel_sizes)
|
||
|
self.num_upsamples = len(upsample_rates)
|
||
|
resblock = AdaINResBlock1
|
||
|
|
||
|
self.m_source = SourceModuleHnNSF(
|
||
|
sampling_rate=24000,
|
||
|
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
||
|
harmonic_num=8, voiced_threshod=10)
|
||
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
||
|
self.noise_convs = nn.ModuleList()
|
||
|
self.noise_res = nn.ModuleList()
|
||
|
|
||
|
self.ups = nn.ModuleList()
|
||
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||
|
self.ups.append(weight_norm(
|
||
|
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||
|
k, u, padding=(k-u)//2)))
|
||
|
|
||
|
self.resblocks = nn.ModuleList()
|
||
|
for i in range(len(self.ups)):
|
||
|
ch = upsample_initial_channel//(2**(i+1))
|
||
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
||
|
self.resblocks.append(resblock(ch, k, d, style_dim))
|
||
|
|
||
|
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
||
|
|
||
|
if i + 1 < len(upsample_rates): #
|
||
|
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||
|
self.noise_convs.append(Conv1d(
|
||
|
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
||
|
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
||
|
else:
|
||
|
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
||
|
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
||
|
|
||
|
|
||
|
self.post_n_fft = gen_istft_n_fft
|
||
|
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
||
|
self.ups.apply(init_weights)
|
||
|
self.conv_post.apply(init_weights)
|
||
|
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
||
|
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
||
|
|
||
|
|
||
|
def forward(self, x, s, f0):
|
||
|
with torch.no_grad():
|
||
|
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
||
|
|
||
|
har_source, noi_source, uv = self.m_source(f0)
|
||
|
har_source = har_source.transpose(1, 2).squeeze(1)
|
||
|
har_spec, har_phase = self.stft.transform(har_source)
|
||
|
har = torch.cat([har_spec, har_phase], dim=1)
|
||
|
|
||
|
for i in range(self.num_upsamples):
|
||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||
|
x_source = self.noise_convs[i](har)
|
||
|
x_source = self.noise_res[i](x_source, s)
|
||
|
|
||
|
x = self.ups[i](x)
|
||
|
if i == self.num_upsamples - 1:
|
||
|
x = self.reflection_pad(x)
|
||
|
|
||
|
x = x + x_source
|
||
|
xs = None
|
||
|
for j in range(self.num_kernels):
|
||
|
if xs is None:
|
||
|
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||
|
else:
|
||
|
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||
|
x = xs / self.num_kernels
|
||
|
x = F.leaky_relu(x)
|
||
|
x = self.conv_post(x)
|
||
|
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||
|
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||
|
return self.stft.inverse(spec, phase)
|
||
|
|
||
|
def fw_phase(self, x, s):
|
||
|
for i in range(self.num_upsamples):
|
||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||
|
x = self.ups[i](x)
|
||
|
xs = None
|
||
|
for j in range(self.num_kernels):
|
||
|
if xs is None:
|
||
|
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
||
|
else:
|
||
|
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
||
|
x = xs / self.num_kernels
|
||
|
x = F.leaky_relu(x)
|
||
|
x = self.reflection_pad(x)
|
||
|
x = self.conv_post(x)
|
||
|
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
||
|
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
||
|
return spec, phase
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
print('Removing weight norm...')
|
||
|
for l in self.ups:
|
||
|
remove_weight_norm(l)
|
||
|
for l in self.resblocks:
|
||
|
l.remove_weight_norm()
|
||
|
remove_weight_norm(self.conv_pre)
|
||
|
remove_weight_norm(self.conv_post)
|
||
|
|
||
|
|
||
|
class AdainResBlk1d(nn.Module):
|
||
|
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
||
|
upsample='none', dropout_p=0.0):
|
||
|
super().__init__()
|
||
|
self.actv = actv
|
||
|
self.upsample_type = upsample
|
||
|
self.upsample = UpSample1d(upsample)
|
||
|
self.learned_sc = dim_in != dim_out
|
||
|
self._build_weights(dim_in, dim_out, style_dim)
|
||
|
self.dropout = nn.Dropout(dropout_p)
|
||
|
|
||
|
if upsample == 'none':
|
||
|
self.pool = nn.Identity()
|
||
|
else:
|
||
|
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
||
|
|
||
|
|
||
|
def _build_weights(self, dim_in, dim_out, style_dim):
|
||
|
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
||
|
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
||
|
self.norm1 = AdaIN1d(style_dim, dim_in)
|
||
|
self.norm2 = AdaIN1d(style_dim, dim_out)
|
||
|
if self.learned_sc:
|
||
|
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
||
|
|
||
|
def _shortcut(self, x):
|
||
|
x = self.upsample(x)
|
||
|
if self.learned_sc:
|
||
|
x = self.conv1x1(x)
|
||
|
return x
|
||
|
|
||
|
def _residual(self, x, s):
|
||
|
x = self.norm1(x, s)
|
||
|
x = self.actv(x)
|
||
|
x = self.pool(x)
|
||
|
x = self.conv1(self.dropout(x))
|
||
|
x = self.norm2(x, s)
|
||
|
x = self.actv(x)
|
||
|
x = self.conv2(self.dropout(x))
|
||
|
return x
|
||
|
|
||
|
def forward(self, x, s):
|
||
|
out = self._residual(x, s)
|
||
|
out = (out + self._shortcut(x)) / np.sqrt(2)
|
||
|
return out
|
||
|
|
||
|
class UpSample1d(nn.Module):
|
||
|
def __init__(self, layer_type):
|
||
|
super().__init__()
|
||
|
self.layer_type = layer_type
|
||
|
|
||
|
def forward(self, x):
|
||
|
if self.layer_type == 'none':
|
||
|
return x
|
||
|
else:
|
||
|
return F.interpolate(x, scale_factor=2, mode='nearest')
|
||
|
|
||
|
class Decoder(nn.Module):
|
||
|
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
||
|
resblock_kernel_sizes = [3,7,11],
|
||
|
upsample_rates = [10, 6],
|
||
|
upsample_initial_channel=512,
|
||
|
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
||
|
upsample_kernel_sizes=[20, 12],
|
||
|
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
||
|
super().__init__()
|
||
|
|
||
|
self.decode = nn.ModuleList()
|
||
|
|
||
|
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
||
|
|
||
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
||
|
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
||
|
|
||
|
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||
|
|
||
|
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
||
|
|
||
|
self.asr_res = nn.Sequential(
|
||
|
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
||
|
)
|
||
|
|
||
|
|
||
|
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
||
|
upsample_initial_channel, resblock_dilation_sizes,
|
||
|
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
||
|
|
||
|
def forward(self, asr, F0_curve, N, s):
|
||
|
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
||
|
N = self.N_conv(N.unsqueeze(1))
|
||
|
|
||
|
x = torch.cat([asr, F0, N], axis=1)
|
||
|
x = self.encode(x, s)
|
||
|
|
||
|
asr_res = self.asr_res(asr)
|
||
|
|
||
|
res = True
|
||
|
for block in self.decode:
|
||
|
if res:
|
||
|
x = torch.cat([x, asr_res, F0, N], axis=1)
|
||
|
x = block(x, s)
|
||
|
if block.upsample_type != "none":
|
||
|
res = False
|
||
|
|
||
|
x = self.generator(x, s, F0_curve)
|
||
|
return x
|