Llama3-Chinese-8B基于Llama3-8B的中文对话模型,由Llama中文社区和AtomEcho(原子回声)联合研发
Go to file
xxl 2371e46c89 first commit 2024-11-12 11:13:40 +08:00
.gitattributes Add .gitattributes 2024-11-12 10:38:17 +08:00
README.md first commit 2024-11-12 11:13:40 +08:00
config.json first commit 2024-11-12 11:13:40 +08:00
configuration.json first commit 2024-11-12 11:13:40 +08:00
configuration_llama.py first commit 2024-11-12 11:13:40 +08:00
generation_config.json first commit 2024-11-12 11:13:40 +08:00
model-00001-of-00004.safetensors first commit 2024-11-12 11:13:40 +08:00
model-00002-of-00004.safetensors first commit 2024-11-12 11:13:40 +08:00
model-00003-of-00004.safetensors first commit 2024-11-12 11:13:40 +08:00
model-00004-of-00004.safetensors first commit 2024-11-12 11:13:40 +08:00
model.safetensors.index.json first commit 2024-11-12 11:13:40 +08:00
modeling_llama.py first commit 2024-11-12 11:13:40 +08:00
special_tokens_map.json first commit 2024-11-12 11:13:40 +08:00
tokenizer.json first commit 2024-11-12 11:13:40 +08:00
tokenizer_config.json first commit 2024-11-12 11:13:40 +08:00

README.md

license
Apache License 2.0

Clone with HTTP

git clone https://www.modelscope.cn/FlagAlpha/Llama3-Chinese-8B-Instruct.git

Llama3-Chinese-8B

Llama3-Chinese-8B基于Llama3-8B的中文对话模型由Llama中文社区和AtomEcho原子回声联合研发我们会持续提供更新的模型参数模型训练过程见(https://llama.family)。

模型的部署、训练、微调等方法详见Llama中文社区GitHub仓库https://github.com/LlamaFamily/Llama-Chinese

在线体验

https://llama.family/chat/#/

如何使用

下载模型

git clone https://www.modelscope.cn/FlagAlpha/Llama3-Chinese-8B-Instruct.git

使用

import transformers
import torch


model_id = "./Llama3-Chinese-8B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.float16},
    device="cuda",
)


messages = [{"role": "system", "content": ""}]

messages.append(
                {"role": "user", "content": "介绍一下机器学习"}
            )

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
    )

terminators = [
        pipeline.tokenizer.eos_token_id,
        pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]
outputs = pipeline(
    prompt,
    max_new_tokens=512,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9
)

content = outputs[0]["generated_text"][len(prompt):]

print(content)