404 lines
15 KiB
Python
404 lines
15 KiB
Python
import math
|
|
from typing import List, Optional
|
|
import json
|
|
import torch
|
|
import torchvision
|
|
|
|
from threading import Thread
|
|
from copy import deepcopy
|
|
from PIL import Image
|
|
from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
|
|
|
|
from .configuration_minicpm import MiniCPMVConfig
|
|
from .modeling_navit_siglip import SiglipVisionTransformer
|
|
from .resampler import Resampler
|
|
|
|
|
|
|
|
class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel):
|
|
config_class = MiniCPMVConfig
|
|
|
|
|
|
class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.llm = Qwen2ForCausalLM(config)
|
|
self.vpm = self.init_vision_module()
|
|
self.vision_dim = self.vpm.embed_dim
|
|
self.embed_dim = self.llm.config.hidden_size
|
|
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
|
|
self.processor = None
|
|
|
|
self.terminators = ['<|im_end|>', '<|endoftext|>']
|
|
|
|
def init_vision_module(self):
|
|
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
|
|
if self.config._attn_implementation == 'flash_attention_2':
|
|
self.config.vision_config._attn_implementation = 'flash_attention_2'
|
|
else:
|
|
# not suport sdpa
|
|
self.config.vision_config._attn_implementation = 'eager'
|
|
model = SiglipVisionTransformer(self.config.vision_config)
|
|
if self.config.drop_vision_last_layer:
|
|
model.encoder.layers = model.encoder.layers[:-1]
|
|
|
|
setattr(model, 'embed_dim', model.embeddings.embed_dim)
|
|
setattr(model, 'patch_size', model.embeddings.patch_size)
|
|
|
|
return model
|
|
|
|
def init_resampler(self, embed_dim, vision_dim):
|
|
return Resampler(
|
|
num_queries=self.config.query_num,
|
|
embed_dim=embed_dim,
|
|
num_heads=embed_dim // 128,
|
|
kv_dim=vision_dim,
|
|
adaptive=True
|
|
)
|
|
|
|
def get_input_embeddings(self):
|
|
return self.llm.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.llm.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.llm.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.llm.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.llm = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.llm
|
|
|
|
def get_vllm_embedding(self, data):
|
|
if 'vision_hidden_states' not in data:
|
|
dtype = self.llm.model.embed_tokens.weight.dtype
|
|
device = self.llm.model.embed_tokens.weight.device
|
|
tgt_sizes = data['tgt_sizes']
|
|
pixel_values_list = data['pixel_values']
|
|
vision_hidden_states = []
|
|
all_pixel_values = []
|
|
img_cnt = []
|
|
for pixel_values in pixel_values_list:
|
|
img_cnt.append(len(pixel_values))
|
|
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
|
|
|
# exist image
|
|
if all_pixel_values:
|
|
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
|
|
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
|
|
|
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
|
|
|
|
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
|
|
padding_value=0.0)
|
|
B, L, _ = all_pixel_values.shape
|
|
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
|
|
|
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
|
|
for i in range(B):
|
|
patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
|
|
|
|
vision_batch_size = self.config.vision_batch_size
|
|
all_pixel_values = all_pixel_values.type(dtype)
|
|
if B > vision_batch_size:
|
|
hs = []
|
|
for i in range(0, B, vision_batch_size):
|
|
start_idx = i
|
|
end_idx = i + vision_batch_size
|
|
tmp_hs = self.vpm(all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx]).last_hidden_state
|
|
hs.append(tmp_hs)
|
|
vision_embedding = torch.cat(hs, dim=0)
|
|
else:
|
|
vision_embedding = self.vpm(all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state
|
|
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
|
|
|
|
start = 0
|
|
for pixel_values in pixel_values_list:
|
|
img_cnt = len(pixel_values)
|
|
if img_cnt > 0:
|
|
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
|
|
start += img_cnt
|
|
else:
|
|
vision_hidden_states.append([])
|
|
else: # no image
|
|
if self.training:
|
|
dummy_image = torch.zeros(
|
|
(1, 3, 224, 224),
|
|
device=device, dtype=dtype
|
|
)
|
|
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
|
|
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
|
|
else:
|
|
dummy_feature = []
|
|
for _ in range(len(pixel_values_list)):
|
|
vision_hidden_states.append(dummy_feature)
|
|
|
|
else:
|
|
vision_hidden_states = data['vision_hidden_states']
|
|
|
|
if hasattr(self.llm.config, 'scale_emb'):
|
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
|
|
else:
|
|
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
|
|
|
|
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
|
|
i, torch.Tensor) else i for i in vision_hidden_states]
|
|
|
|
bs = len(data['input_ids'])
|
|
for i in range(bs):
|
|
cur_vs_hs = vision_hidden_states[i]
|
|
if len(cur_vs_hs) > 0:
|
|
cur_vllm_emb = vllm_embedding[i]
|
|
cur_image_bound = data['image_bound'][i]
|
|
if len(cur_image_bound) > 0:
|
|
image_indices = torch.stack(
|
|
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
|
).to(vllm_embedding.device)
|
|
|
|
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
|
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
|
elif self.training:
|
|
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
|
|
|
return vllm_embedding, vision_hidden_states
|
|
|
|
def forward(self, data, **kwargs):
|
|
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
|
position_ids = data["position_ids"]
|
|
if position_ids.dtype != torch.int64:
|
|
position_ids = position_ids.long()
|
|
|
|
return self.llm(
|
|
input_ids=None,
|
|
position_ids=position_ids,
|
|
inputs_embeds=vllm_embedding,
|
|
**kwargs
|
|
)
|
|
|
|
def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
output = self.llm.generate(
|
|
inputs_embeds=inputs_embeds,
|
|
pad_token_id=0,
|
|
eos_token_id=terminators,
|
|
attention_mask=attention_mask,
|
|
**kwargs
|
|
)
|
|
if decode_text:
|
|
return self._decode_text(output, tokenizer)
|
|
return output
|
|
|
|
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
|
generation_kwargs = {
|
|
'inputs_embeds': inputs_embeds,
|
|
'pad_token_id': 0,
|
|
'eos_token_id': terminators,
|
|
'streamer': streamer
|
|
}
|
|
generation_kwargs.update(kwargs)
|
|
|
|
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
|
|
return streamer
|
|
|
|
def _decode_text(self, result_ids, tokenizer):
|
|
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
|
|
result_text = []
|
|
for result in result_ids:
|
|
result = result[result != 0]
|
|
if result[0] == tokenizer.bos_id:
|
|
result = result[1:]
|
|
if result[-1] in terminators:
|
|
result = result[:-1]
|
|
result_text.append(tokenizer.decode(result).strip())
|
|
return result_text
|
|
|
|
def generate(
|
|
self,
|
|
input_ids=None,
|
|
pixel_values=None,
|
|
tgt_sizes=None,
|
|
image_bound=None,
|
|
attention_mask=None,
|
|
tokenizer=None,
|
|
vision_hidden_states=None,
|
|
return_vision_hidden_states=False,
|
|
stream=False,
|
|
decode_text=False,
|
|
**kwargs
|
|
):
|
|
assert input_ids is not None
|
|
assert len(input_ids) == len(pixel_values)
|
|
|
|
model_inputs = {
|
|
"input_ids": input_ids,
|
|
"image_bound": image_bound,
|
|
}
|
|
|
|
if vision_hidden_states is None:
|
|
model_inputs["pixel_values"] = pixel_values
|
|
model_inputs['tgt_sizes'] = tgt_sizes
|
|
else:
|
|
model_inputs["vision_hidden_states"] = vision_hidden_states
|
|
|
|
with torch.inference_mode():
|
|
(
|
|
model_inputs["inputs_embeds"],
|
|
vision_hidden_states,
|
|
) = self.get_vllm_embedding(model_inputs)
|
|
|
|
if stream:
|
|
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
|
else:
|
|
result = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs)
|
|
|
|
if return_vision_hidden_states:
|
|
return result, vision_hidden_states
|
|
|
|
return result
|
|
|
|
def chat(
|
|
self,
|
|
image,
|
|
msgs,
|
|
tokenizer,
|
|
processor=None,
|
|
vision_hidden_states=None,
|
|
max_new_tokens=2048,
|
|
min_new_tokens=0,
|
|
sampling=True,
|
|
max_inp_length=8192,
|
|
system_prompt='',
|
|
stream=False,
|
|
max_slice_nums=None,
|
|
use_image_id=None,
|
|
**kwargs
|
|
):
|
|
if isinstance(msgs[0], list):
|
|
batched = True
|
|
else:
|
|
batched = False
|
|
msgs_list = msgs
|
|
images_list = image
|
|
|
|
if batched is False:
|
|
images_list, msgs_list = [images_list], [msgs_list]
|
|
else:
|
|
assert images_list is None, "Please integrate image to msgs when using batch inference."
|
|
images_list = [None] * len(msgs_list)
|
|
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
|
|
|
|
if processor is None:
|
|
if self.processor is None:
|
|
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
|
processor = self.processor
|
|
|
|
assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
|
|
|
|
prompts_lists = []
|
|
input_images_lists = []
|
|
for image, msgs in zip(images_list, msgs_list):
|
|
if isinstance(msgs, str):
|
|
msgs = json.loads(msgs)
|
|
copy_msgs = deepcopy(msgs)
|
|
|
|
assert len(msgs) > 0, "msgs is empty"
|
|
assert sampling or not stream, "if use stream mode, make sure sampling=True"
|
|
|
|
if image is not None and isinstance(copy_msgs[0]["content"], str):
|
|
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
|
|
|
|
images = []
|
|
for i, msg in enumerate(copy_msgs):
|
|
role = msg["role"]
|
|
content = msg["content"]
|
|
assert role in ["user", "assistant"]
|
|
if i == 0:
|
|
assert role == "user", "The role of first msg should be user"
|
|
if isinstance(content, str):
|
|
content = [content]
|
|
cur_msgs = []
|
|
for c in content:
|
|
if isinstance(c, Image.Image):
|
|
images.append(c)
|
|
cur_msgs.append("(<image>./</image>)")
|
|
elif isinstance(c, str):
|
|
cur_msgs.append(c)
|
|
msg["content"] = "\n".join(cur_msgs)
|
|
|
|
if system_prompt:
|
|
sys_msg = {'role': 'system', 'content': system_prompt}
|
|
copy_msgs = [sys_msg] + copy_msgs
|
|
|
|
prompts_lists.append(processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True))
|
|
input_images_lists.append(images)
|
|
|
|
inputs = processor(
|
|
prompts_lists,
|
|
input_images_lists,
|
|
max_slice_nums=max_slice_nums,
|
|
use_image_id=use_image_id,
|
|
return_tensors="pt",
|
|
max_length=max_inp_length
|
|
).to(self.device)
|
|
|
|
if sampling:
|
|
generation_config = {
|
|
"top_p": 0.8,
|
|
"top_k": 100,
|
|
"temperature": 0.7,
|
|
"do_sample": True,
|
|
"repetition_penalty": 1.05
|
|
}
|
|
else:
|
|
generation_config = {
|
|
"num_beams": 3,
|
|
"repetition_penalty": 1.2,
|
|
}
|
|
|
|
if min_new_tokens > 0:
|
|
generation_config['min_new_tokens'] = min_new_tokens
|
|
|
|
generation_config.update(
|
|
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
|
)
|
|
|
|
inputs.pop("image_sizes")
|
|
with torch.inference_mode():
|
|
res = self.generate(
|
|
**inputs,
|
|
tokenizer=tokenizer,
|
|
max_new_tokens=max_new_tokens,
|
|
vision_hidden_states=vision_hidden_states,
|
|
stream=stream,
|
|
decode_text=True,
|
|
**generation_config
|
|
)
|
|
|
|
if stream:
|
|
def stream_gen():
|
|
for text in res:
|
|
for term in self.terminators:
|
|
text = text.replace(term, '')
|
|
yield text
|
|
return stream_gen()
|
|
|
|
else:
|
|
if batched:
|
|
answer = res
|
|
else:
|
|
answer = res[0]
|
|
return answer
|