408 lines
16 KiB
Python
408 lines
16 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import math
|
||
|
from typing import Any
|
||
|
from typing import Dict
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Union
|
||
|
|
||
|
import numpy as np
|
||
|
import PIL
|
||
|
import PIL.Image
|
||
|
import PIL.ImageSequence
|
||
|
import torch
|
||
|
from PIL import Image
|
||
|
from transformers import AutoImageProcessor
|
||
|
from transformers.image_processing_utils import BaseImageProcessor
|
||
|
from transformers.image_processing_utils import BatchFeature
|
||
|
from transformers.image_transforms import to_channel_dimension_format
|
||
|
from transformers.image_utils import ChannelDimension
|
||
|
from transformers.image_utils import infer_channel_dimension_format
|
||
|
from transformers.image_utils import is_torch_tensor
|
||
|
from transformers.image_utils import to_numpy_array
|
||
|
from transformers.image_utils import valid_images
|
||
|
from transformers.utils import is_torch_device
|
||
|
from transformers.utils import is_torch_dtype
|
||
|
from transformers.utils import requires_backends
|
||
|
from transformers.utils import TensorType
|
||
|
|
||
|
|
||
|
def recursive_converter(converter, value):
|
||
|
if isinstance(value, list):
|
||
|
new_value = []
|
||
|
for v in value:
|
||
|
new_value += [recursive_converter(converter, v)]
|
||
|
return new_value
|
||
|
else:
|
||
|
return converter(value)
|
||
|
|
||
|
|
||
|
class MiniCPMOBatchFeature(BatchFeature):
|
||
|
r"""
|
||
|
Extend from BatchFeature for supporting various image size
|
||
|
"""
|
||
|
|
||
|
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
|
||
|
super().__init__(data)
|
||
|
self.convert_to_tensors(tensor_type=tensor_type)
|
||
|
|
||
|
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
||
|
if tensor_type is None:
|
||
|
return self
|
||
|
|
||
|
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
|
||
|
|
||
|
def converter(value):
|
||
|
try:
|
||
|
if not is_tensor(value):
|
||
|
tensor = as_tensor(value)
|
||
|
return tensor
|
||
|
except: # noqa E722
|
||
|
if key == "overflowing_values":
|
||
|
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
||
|
raise ValueError(
|
||
|
"Unable to create tensor, you should probably activate padding "
|
||
|
"with 'padding=True' to have batched tensors with the same length."
|
||
|
)
|
||
|
|
||
|
for key, value in self.items():
|
||
|
self[key] = recursive_converter(converter, value)
|
||
|
return self
|
||
|
|
||
|
def to(self, *args, **kwargs) -> "MiniCPMOBatchFeature":
|
||
|
requires_backends(self, ["torch"])
|
||
|
import torch
|
||
|
|
||
|
def cast_tensor(v):
|
||
|
# check if v is a floating point
|
||
|
if torch.is_floating_point(v):
|
||
|
# cast and send to device
|
||
|
return v.to(*args, **kwargs)
|
||
|
elif device is not None:
|
||
|
return v.to(device=device)
|
||
|
else:
|
||
|
return v
|
||
|
|
||
|
new_data = {}
|
||
|
device = kwargs.get("device")
|
||
|
# Check if the args are a device or a dtype
|
||
|
if device is None and len(args) > 0:
|
||
|
# device should be always the first argument
|
||
|
arg = args[0]
|
||
|
if is_torch_dtype(arg):
|
||
|
# The first argument is a dtype
|
||
|
pass
|
||
|
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
||
|
device = arg
|
||
|
else:
|
||
|
# it's something else
|
||
|
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
||
|
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
||
|
for k, v in self.items():
|
||
|
new_data[k] = recursive_converter(cast_tensor, v)
|
||
|
self.data = new_data
|
||
|
return self
|
||
|
|
||
|
|
||
|
class MiniCPMVImageProcessor(BaseImageProcessor):
|
||
|
model_input_names = ["pixel_values"]
|
||
|
|
||
|
def __init__(self, max_slice_nums=9, scale_resolution=448, patch_size=14, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.max_slice_nums = max_slice_nums
|
||
|
self.scale_resolution = scale_resolution
|
||
|
self.patch_size = patch_size
|
||
|
self.use_image_id = kwargs.pop("use_image_id", False)
|
||
|
self.image_feature_size = kwargs.pop("image_feature_size", 64)
|
||
|
self.im_start_token = kwargs.pop("im_start", "<image>")
|
||
|
self.im_end_token = kwargs.pop("im_end", "</image>")
|
||
|
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
|
||
|
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
|
||
|
self.unk_token = kwargs.pop("unk", "<unk>")
|
||
|
self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
|
||
|
self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
|
||
|
self.slice_mode = kwargs.pop("slice_mode", True)
|
||
|
|
||
|
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
|
||
|
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
|
||
|
self.version = kwargs.pop("version", 2.0)
|
||
|
|
||
|
def ensure_divide(self, length, patch_size):
|
||
|
return max(round(length / patch_size) * patch_size, patch_size)
|
||
|
|
||
|
def find_best_resize(self, original_size, scale_resolution, patch_size, allow_upscale=False):
|
||
|
width, height = original_size
|
||
|
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
||
|
r = width / height
|
||
|
height = int(scale_resolution / math.sqrt(r))
|
||
|
width = int(height * r)
|
||
|
best_width = self.ensure_divide(width, patch_size)
|
||
|
best_height = self.ensure_divide(height, patch_size)
|
||
|
return (best_width, best_height)
|
||
|
|
||
|
def get_refine_size(self, original_size, grid, scale_resolution, patch_size, allow_upscale=False):
|
||
|
width, height = original_size
|
||
|
grid_x, grid_y = grid
|
||
|
|
||
|
refine_width = self.ensure_divide(width, grid_x)
|
||
|
refine_height = self.ensure_divide(height, grid_y)
|
||
|
|
||
|
grid_width = refine_width / grid_x
|
||
|
grid_height = refine_height / grid_y
|
||
|
|
||
|
best_grid_size = self.find_best_resize(
|
||
|
(grid_width, grid_height), scale_resolution, patch_size, allow_upscale=allow_upscale
|
||
|
)
|
||
|
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
||
|
return refine_size
|
||
|
|
||
|
def split_to_patches(self, image, grid):
|
||
|
patches = []
|
||
|
width, height = image.size
|
||
|
grid_x = int(width / grid[0])
|
||
|
grid_y = int(height / grid[1])
|
||
|
for i in range(0, height, grid_y):
|
||
|
images = []
|
||
|
for j in range(0, width, grid_x):
|
||
|
box = (j, i, j + grid_x, i + grid_y)
|
||
|
patch = image.crop(box)
|
||
|
images.append(patch)
|
||
|
patches.append(images)
|
||
|
return patches
|
||
|
|
||
|
def slice_image(self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False):
|
||
|
original_size = image.size
|
||
|
source_image = None
|
||
|
best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
|
||
|
patches = []
|
||
|
|
||
|
if best_grid is None:
|
||
|
# dont need to slice, upsample
|
||
|
best_size = self.find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=True)
|
||
|
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
|
||
|
else:
|
||
|
# source image, down-sampling and ensure divided by patch_size
|
||
|
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
|
||
|
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
|
||
|
refine_size = self.get_refine_size(
|
||
|
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
||
|
)
|
||
|
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
|
||
|
patches = self.split_to_patches(refine_image, best_grid)
|
||
|
|
||
|
return source_image, patches, best_grid
|
||
|
|
||
|
def get_grid_placeholder(self, grid):
|
||
|
if grid is None:
|
||
|
return ""
|
||
|
slice_image_placeholder = (
|
||
|
self.slice_start_token + self.unk_token * self.image_feature_size + self.slice_end_token
|
||
|
)
|
||
|
|
||
|
cols = grid[0]
|
||
|
rows = grid[1]
|
||
|
slices = []
|
||
|
for i in range(rows):
|
||
|
lines = []
|
||
|
for j in range(cols):
|
||
|
lines.append(slice_image_placeholder)
|
||
|
slices.append("".join(lines))
|
||
|
|
||
|
slice_placeholder = "\n".join(slices)
|
||
|
return slice_placeholder
|
||
|
|
||
|
def get_image_id_placeholder(self, idx=0):
|
||
|
return f"{self.im_id_start}{idx}{self.im_id_end}"
|
||
|
|
||
|
def get_sliced_images(self, image, max_slice_nums=None):
|
||
|
slice_images = []
|
||
|
|
||
|
if not self.slice_mode:
|
||
|
return [image]
|
||
|
|
||
|
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
|
||
|
assert max_slice_nums > 0
|
||
|
source_image, patches, sliced_grid = self.slice_image(
|
||
|
image, max_slice_nums, self.scale_resolution, self.patch_size # default: 9 # default: 448 # default: 14
|
||
|
)
|
||
|
|
||
|
slice_images.append(source_image)
|
||
|
if len(patches) > 0:
|
||
|
for i in range(len(patches)):
|
||
|
for j in range(len(patches[0])):
|
||
|
slice_images.append(patches[i][j])
|
||
|
return slice_images
|
||
|
|
||
|
def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
|
||
|
original_width, original_height = image_size
|
||
|
log_ratio = math.log(original_width / original_height)
|
||
|
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
|
||
|
multiple = min(math.ceil(ratio), max_slice_nums)
|
||
|
if multiple <= 1 or nerver_split:
|
||
|
return None
|
||
|
candidate_split_grids_nums = []
|
||
|
for i in [multiple - 1, multiple, multiple + 1]:
|
||
|
if i == 1 or i > max_slice_nums:
|
||
|
continue
|
||
|
candidate_split_grids_nums.append(i)
|
||
|
|
||
|
candidate_grids = []
|
||
|
for split_grids_nums in candidate_split_grids_nums:
|
||
|
m = 1
|
||
|
while m <= split_grids_nums:
|
||
|
if split_grids_nums % m == 0:
|
||
|
candidate_grids.append([m, split_grids_nums // m])
|
||
|
m += 1
|
||
|
|
||
|
best_grid = [1, 1]
|
||
|
min_error = float("inf")
|
||
|
for grid in candidate_grids:
|
||
|
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
||
|
if error < min_error:
|
||
|
best_grid = grid
|
||
|
min_error = error
|
||
|
|
||
|
return best_grid
|
||
|
|
||
|
def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
|
||
|
max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
|
||
|
assert max_slice_nums > 0
|
||
|
grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
|
||
|
|
||
|
image_placeholder = self.im_start_token + self.unk_token * self.image_feature_size + self.im_end_token
|
||
|
use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
|
||
|
if use_image_id:
|
||
|
final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
|
||
|
else:
|
||
|
final_placeholder = image_placeholder
|
||
|
|
||
|
if self.slice_mode:
|
||
|
final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
|
||
|
return final_placeholder
|
||
|
|
||
|
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
|
||
|
"""
|
||
|
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
||
|
needed.
|
||
|
|
||
|
Args:
|
||
|
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
|
||
|
The image to convert to the PIL Image format.
|
||
|
rescale (`bool`, *optional*):
|
||
|
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
|
||
|
default to `True` if the image type is a floating type, `False` otherwise.
|
||
|
"""
|
||
|
if isinstance(image, PIL.Image.Image):
|
||
|
return image
|
||
|
if is_torch_tensor(image):
|
||
|
image = image.numpy()
|
||
|
|
||
|
if isinstance(image, np.ndarray):
|
||
|
if rescale is None:
|
||
|
# rescale default to the array being of floating type.
|
||
|
rescale = isinstance(image.flat[0], np.floating)
|
||
|
# If the channel as been moved to first dim, we put it back at the end.
|
||
|
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
||
|
image = image.transpose(1, 2, 0)
|
||
|
if rescale:
|
||
|
image = image * 255
|
||
|
image = image.astype(np.uint8)
|
||
|
return PIL.Image.fromarray(image)
|
||
|
return image
|
||
|
|
||
|
def reshape_by_patch(self, image):
|
||
|
"""
|
||
|
:param image: shape [3, H, W]
|
||
|
:param patch_size:
|
||
|
:return: [3, patch_size, HW/patch_size]
|
||
|
"""
|
||
|
image = torch.from_numpy(image)
|
||
|
patch_size = self.patch_size
|
||
|
patches = torch.nn.functional.unfold(image, (patch_size, patch_size), stride=(patch_size, patch_size))
|
||
|
|
||
|
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
|
||
|
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
|
||
|
return patches.numpy()
|
||
|
|
||
|
def preprocess(
|
||
|
self,
|
||
|
images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
|
||
|
do_pad: Optional[bool] = True,
|
||
|
max_slice_nums: int = None,
|
||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
||
|
**kwargs,
|
||
|
) -> MiniCPMOBatchFeature:
|
||
|
if isinstance(images, Image.Image):
|
||
|
images_list = [[images]]
|
||
|
elif isinstance(images[0], Image.Image):
|
||
|
images_list = [images]
|
||
|
else:
|
||
|
images_list = images
|
||
|
|
||
|
new_images_list = []
|
||
|
image_sizes_list = []
|
||
|
tgt_sizes_list = []
|
||
|
|
||
|
for _images in images_list:
|
||
|
if _images is None or len(_images) == 0:
|
||
|
new_images_list.append([])
|
||
|
image_sizes_list.append([])
|
||
|
tgt_sizes_list.append([])
|
||
|
continue
|
||
|
if not valid_images(_images):
|
||
|
raise ValueError(
|
||
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||
|
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||
|
)
|
||
|
|
||
|
_images = [self.to_pil_image(image).convert("RGB") for image in _images]
|
||
|
input_data_format = infer_channel_dimension_format(np.array(_images[0]))
|
||
|
|
||
|
new_images = []
|
||
|
image_sizes = [image.size for image in _images]
|
||
|
tgt_sizes = []
|
||
|
for image in _images:
|
||
|
image_patches = self.get_sliced_images(image, max_slice_nums)
|
||
|
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
|
||
|
image_patches = [
|
||
|
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
|
||
|
for image in image_patches
|
||
|
]
|
||
|
image_patches = [
|
||
|
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
|
||
|
for image in image_patches
|
||
|
]
|
||
|
for slice_image in image_patches:
|
||
|
new_images.append(self.reshape_by_patch(slice_image))
|
||
|
tgt_sizes.append(
|
||
|
np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size))
|
||
|
)
|
||
|
|
||
|
if tgt_sizes:
|
||
|
tgt_sizes = np.vstack(tgt_sizes)
|
||
|
|
||
|
new_images_list.append(new_images)
|
||
|
image_sizes_list.append(image_sizes)
|
||
|
tgt_sizes_list.append(tgt_sizes)
|
||
|
return MiniCPMOBatchFeature(
|
||
|
data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list},
|
||
|
tensor_type=return_tensors,
|
||
|
)
|
||
|
|
||
|
|
||
|
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
|