211 lines
7.4 KiB
Python
211 lines
7.4 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import os
|
||
|
from typing import Union
|
||
|
|
||
|
from transformers import PretrainedConfig
|
||
|
from transformers import Qwen2Config
|
||
|
from transformers import WhisperConfig
|
||
|
from transformers.utils import logging
|
||
|
|
||
|
from .modeling_navit_siglip import SiglipVisionConfig
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class MiniCPMVSliceConfig(PretrainedConfig):
|
||
|
model_type = "minicpmv"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
patch_size=14,
|
||
|
max_slice_nums=9,
|
||
|
scale_resolution=448,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
self.patch_size = patch_size
|
||
|
self.max_slice_nums = max_slice_nums
|
||
|
self.scale_resolution = scale_resolution
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
if config_dict.get("model_type") == "minicpmv":
|
||
|
config_dict = config_dict["slice_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class ConditionalChatTTSConfig(PretrainedConfig):
|
||
|
model_type = "conditional_chattts"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
llm_dim: int = 2560,
|
||
|
hidden_size: int = 768,
|
||
|
intermediate_size: int = 3072,
|
||
|
num_attention_heads: int = 12,
|
||
|
num_hidden_layers: int = 20,
|
||
|
max_position_embeddings: int = 4096,
|
||
|
num_audio_tokens: int = 626,
|
||
|
num_text_tokens: int = 21178,
|
||
|
num_mel_bins: int = 100,
|
||
|
num_vq: int = 4,
|
||
|
use_speaker_embedding: bool = True,
|
||
|
use_llm_hidden_state: bool = False,
|
||
|
spk_emb_token_id: int = 21143,
|
||
|
num_spk_embs: int = 1,
|
||
|
audio_bos_token_id: int = 21132,
|
||
|
text_eos_token_id: int = 21133,
|
||
|
use_text: bool = True,
|
||
|
streaming: bool = True,
|
||
|
streaming_text_chunk_size: int = 10,
|
||
|
streaming_text_reserved_len: int = 300,
|
||
|
streaming_audio_chunk_size: int = 50,
|
||
|
attn_implementation: str = "sdpa",
|
||
|
use_mlp: bool = True,
|
||
|
aug_loss_weight: bool = True,
|
||
|
do_sample: bool = True,
|
||
|
top_p: float = 0.7,
|
||
|
top_k: int = 20,
|
||
|
repetition_penalty: float = 1.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.llm_dim = llm_dim
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.num_audio_tokens = num_audio_tokens
|
||
|
self.num_text_tokens = num_text_tokens
|
||
|
self.num_mel_bins = num_mel_bins
|
||
|
self.num_vq = num_vq
|
||
|
self.use_speaker_embedding = use_speaker_embedding
|
||
|
self.use_llm_hidden_state = use_llm_hidden_state
|
||
|
self.spk_emb_token_id = spk_emb_token_id
|
||
|
self.num_spk_embs = num_spk_embs
|
||
|
self.audio_bos_token_id = audio_bos_token_id
|
||
|
self.text_eos_token_id = text_eos_token_id
|
||
|
self.use_text = use_text
|
||
|
self.streaming = streaming
|
||
|
self.streaming_text_chunk_size = streaming_text_chunk_size
|
||
|
self.streaming_text_reserved_len = streaming_text_reserved_len
|
||
|
self.streaming_audio_chunk_size = streaming_audio_chunk_size
|
||
|
self.attn_implementation = attn_implementation
|
||
|
self.use_mlp = use_mlp
|
||
|
self.aug_loss_weight = aug_loss_weight
|
||
|
self.do_sample = do_sample
|
||
|
self.top_p = top_p
|
||
|
self.top_k = top_k
|
||
|
self.repetition_penalty = repetition_penalty
|
||
|
|
||
|
|
||
|
class MiniCPMOConfig(Qwen2Config):
|
||
|
model_type = "minicpmo"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
default_vision_config = {
|
||
|
"hidden_size": 1152,
|
||
|
"image_size": 980,
|
||
|
"intermediate_size": 4304,
|
||
|
"model_type": "siglip",
|
||
|
"num_attention_heads": 16,
|
||
|
"num_hidden_layers": 27,
|
||
|
"patch_size": 14,
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
use_cache=True,
|
||
|
query_num=64,
|
||
|
image_size=448,
|
||
|
drop_vision_last_layer=True,
|
||
|
batch_vision_input=True,
|
||
|
slice_config=None,
|
||
|
vision_config=None,
|
||
|
audio_config=None,
|
||
|
tts_config=None,
|
||
|
use_image_id=True,
|
||
|
vision_batch_size=16,
|
||
|
audio_pool_step=2,
|
||
|
audio_chunk_length=1.0,
|
||
|
stream_input=False,
|
||
|
init_vision=True,
|
||
|
init_audio=True,
|
||
|
init_tts=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.use_cache = use_cache
|
||
|
self.query_num = query_num
|
||
|
self.image_size = image_size
|
||
|
self.drop_vision_last_layer = drop_vision_last_layer
|
||
|
self.batch_vision_input = batch_vision_input
|
||
|
self.use_image_id = use_image_id
|
||
|
self.vision_batch_size = vision_batch_size
|
||
|
self.audio_pool_step = audio_pool_step
|
||
|
self.audio_chunk_length = audio_chunk_length
|
||
|
self.stream_input = stream_input
|
||
|
self.init_vision = init_vision
|
||
|
self.init_audio = init_audio
|
||
|
self.init_tts = init_tts
|
||
|
|
||
|
if slice_config is None:
|
||
|
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
|
||
|
else:
|
||
|
self.slice_config = MiniCPMVSliceConfig(**slice_config)
|
||
|
self.slice_mode = True
|
||
|
|
||
|
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
|
||
|
if vision_config is None:
|
||
|
self.vision_config = SiglipVisionConfig(**self.default_vision_config)
|
||
|
logger.info("vision_config is None, using default vision config")
|
||
|
elif isinstance(vision_config, dict):
|
||
|
self.vision_config = SiglipVisionConfig(**vision_config)
|
||
|
elif isinstance(vision_config, SiglipVisionConfig):
|
||
|
self.vision_config = vision_config
|
||
|
|
||
|
# same as openai/whisper-medium add use_cache
|
||
|
if audio_config is None:
|
||
|
self.audio_config = WhisperConfig()
|
||
|
elif isinstance(audio_config, dict):
|
||
|
self.audio_config = WhisperConfig(**audio_config)
|
||
|
elif isinstance(audio_config, WhisperConfig):
|
||
|
self.audio_config = audio_config
|
||
|
|
||
|
if tts_config is None:
|
||
|
self.tts_config = ConditionalChatTTSConfig()
|
||
|
elif isinstance(tts_config, dict):
|
||
|
self.tts_config = ConditionalChatTTSConfig(**tts_config)
|
||
|
elif isinstance(tts_config, ConditionalChatTTSConfig):
|
||
|
self.tts_config = tts_config
|
||
|
|
||
|
self.patch_size = self.vision_config.patch_size
|
||
|
|
||
|
super().__init__(**kwargs)
|