506 lines
20 KiB
Python
506 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Processor class for MiniCPMO.
|
|
"""
|
|
|
|
import math
|
|
import re
|
|
from typing import List
|
|
from typing import Literal
|
|
from typing import Optional
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from transformers.image_utils import ImageInput
|
|
from transformers.processing_utils import ProcessorMixin
|
|
from transformers.tokenization_utils_base import PreTokenizedInput
|
|
from transformers.tokenization_utils_base import TextInput
|
|
from transformers.utils import TensorType
|
|
|
|
from .image_processing_minicpmv import MiniCPMOBatchFeature
|
|
|
|
|
|
class MiniCPMOProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
|
|
|
|
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
|
|
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
|
|
|
|
Args:
|
|
image_processor ([`MiniCPMVImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
|
|
The tokenizer is a required input.
|
|
"""
|
|
|
|
attributes = ["image_processor", "feature_extractor", "tokenizer"]
|
|
feature_extractor_class = "WhisperFeatureExtractor"
|
|
image_processor_class = "AutoImageProcessor"
|
|
tokenizer_class = "AutoTokenizer"
|
|
|
|
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
|
|
super().__init__(image_processor, feature_extractor, tokenizer)
|
|
self.version = image_processor.version
|
|
|
|
def __call__(
|
|
self,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
|
images: ImageInput = None,
|
|
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
|
|
audio_parts: Optional[list] = None,
|
|
max_length: Optional[int] = None,
|
|
do_pad: Optional[bool] = True,
|
|
max_slice_nums: int = None,
|
|
use_image_id: bool = True,
|
|
chunk_input: bool = False,
|
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
|
sampling_rate: Optional[int] = 16000,
|
|
**kwargs,
|
|
) -> MiniCPMOBatchFeature:
|
|
if images is not None:
|
|
image_inputs = self.image_processor(
|
|
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
|
|
)
|
|
else:
|
|
image_inputs = None
|
|
|
|
if audios is not None:
|
|
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
|
|
audios, audio_parts, chunk_input, sampling_rate
|
|
)
|
|
else:
|
|
audio_features, audio_feature_lens, audio_phs = [], [], []
|
|
|
|
model_inputs = self._convert_omni_to_inputs(
|
|
image_inputs,
|
|
audio_phs,
|
|
text,
|
|
max_slice_nums=max_slice_nums,
|
|
use_image_id=use_image_id,
|
|
max_length=max_length,
|
|
**kwargs,
|
|
)
|
|
|
|
model_inputs["audio_features"] = audio_features
|
|
model_inputs["audio_feature_lens"] = audio_feature_lens
|
|
|
|
return MiniCPMOBatchFeature(data={**model_inputs})
|
|
|
|
def audio_feature_extract(
|
|
self,
|
|
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
|
|
audio_parts: Optional[list] = None,
|
|
chunk_input: Optional[bool] = False,
|
|
sampling_rate: Optional[int] = None,
|
|
chunk_length: Optional[int] = 1,
|
|
**kwargs,
|
|
):
|
|
def get_audio_placeholder(audio_lens, chunk_input):
|
|
pool_step = 2
|
|
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)
|
|
|
|
feature_lens = (feature_lens - 1) // 2 + 1
|
|
output_lens = (feature_lens - pool_step) // pool_step + 1
|
|
|
|
if chunk_input:
|
|
fbank_feat_in_chunk = int(chunk_length * 100)
|
|
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
|
|
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
|
|
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk
|
|
|
|
place_holders = ""
|
|
total_unk_len = 0
|
|
for _ in range(num_audio_chunks):
|
|
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
|
|
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
|
|
total_unk_len += unk_len
|
|
audio_placeholder = place_holders
|
|
else:
|
|
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end
|
|
|
|
return audio_placeholder
|
|
|
|
if isinstance(audios, np.ndarray):
|
|
audios_list = [[audios]]
|
|
elif isinstance(audios[0], np.ndarray):
|
|
audios_list = [audios]
|
|
else:
|
|
audios_list = audios
|
|
|
|
if audio_parts is not None:
|
|
assert len(audio_parts) == len(audios_list)
|
|
for parts, audios in zip(audio_parts, audios_list):
|
|
assert len(parts) == len(audios)
|
|
|
|
audio_feature_lens_list = []
|
|
audio_ph_list = []
|
|
|
|
audio_features_all = []
|
|
|
|
# audio placeholder not dependent on audio_parts
|
|
for audios in audios_list:
|
|
if audios:
|
|
audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios])
|
|
else:
|
|
audio_ph_list.append([])
|
|
|
|
for idx, audios in enumerate(audios_list):
|
|
if audio_parts is not None:
|
|
# same audio part merge
|
|
audio_part = audio_parts[idx]
|
|
merge_audio = []
|
|
cur_audio = []
|
|
for aid, (part, audio) in enumerate(zip(audio_part, audios)):
|
|
if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
|
|
cur_audio.append(audio)
|
|
else:
|
|
merge_audio.append(np.hstack(cur_audio))
|
|
cur_audio = [audio]
|
|
if cur_audio:
|
|
merge_audio.append(np.hstack(cur_audio))
|
|
|
|
else:
|
|
merge_audio = audios
|
|
|
|
audio_feature_lens = []
|
|
|
|
# If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
|
|
final_merge_audio = []
|
|
max_audio_inp_len = 30 * sampling_rate
|
|
for audio in merge_audio:
|
|
if len(audio) <= max_audio_inp_len:
|
|
final_merge_audio.append(audio)
|
|
else:
|
|
for i in range(math.ceil(len(audio) / max_audio_inp_len)):
|
|
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])
|
|
|
|
if audios:
|
|
audio_inputs = self.feature_extractor(
|
|
final_merge_audio,
|
|
sampling_rate=sampling_rate,
|
|
return_attention_mask=True,
|
|
padding="max_length",
|
|
return_tensors="pt",
|
|
**kwargs,
|
|
)
|
|
audio_feature = audio_inputs["input_features"]
|
|
actual_lens = audio_inputs["attention_mask"].sum(dim=1)
|
|
|
|
for feat, lens in zip(audio_feature, actual_lens):
|
|
audio_features_all.append(feat[:, :lens])
|
|
audio_feature_lens.append(lens)
|
|
|
|
audio_feature_lens = torch.hstack(audio_feature_lens)
|
|
audio_feature_lens_list.append(audio_feature_lens)
|
|
else:
|
|
audio_feature_lens_list.append([])
|
|
|
|
if audio_features_all:
|
|
audio_features = [i.permute(1, 0) for i in audio_features_all]
|
|
audio_features = torch.nn.utils.rnn.pad_sequence(
|
|
audio_features, batch_first=True, padding_value=0.0
|
|
).permute(0, 2, 1)
|
|
else:
|
|
audio_features = []
|
|
|
|
return audio_features, audio_feature_lens_list, audio_ph_list
|
|
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
output_ids = args[0]
|
|
result_text = []
|
|
for result in output_ids:
|
|
result = result[result != 0]
|
|
if result[0] == self.tokenizer.bos_id:
|
|
result = result[1:]
|
|
if result[-1] == self.tokenizer.eos_id:
|
|
result = result[:-1]
|
|
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
|
|
return result_text
|
|
# return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
result = args[0]
|
|
result = result[result != 0]
|
|
if result[0] == self.tokenizer.bos_id:
|
|
result = result[1:]
|
|
if result[-1] == self.tokenizer.eos_id or (
|
|
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
|
|
):
|
|
result = result[:-1]
|
|
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
|
|
|
|
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
|
|
input_ids = self.tokenizer.encode(input_str, **kwargs)
|
|
if max_inp_length is not None:
|
|
input_ids = input_ids[:max_inp_length]
|
|
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
|
|
|
## image bound
|
|
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
|
|
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
|
|
|
|
image_start_idx = torch.where(start_cond)[0]
|
|
image_start_idx += 1
|
|
image_end_idx = torch.where(end_cond)[0]
|
|
|
|
valid_image_nums = max(len(image_start_idx), len(image_end_idx))
|
|
|
|
image_bounds = torch.hstack(
|
|
[
|
|
image_start_idx[:valid_image_nums].unsqueeze(-1),
|
|
image_end_idx[:valid_image_nums].unsqueeze(-1),
|
|
]
|
|
)
|
|
|
|
## audio bound
|
|
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
|
|
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
|
|
assert len(audio_start_idx) == len(audio_end_idx)
|
|
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
|
|
|
|
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
|
|
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
|
|
assert len(spk_start_idx) == len(spk_end_idx)
|
|
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
|
|
|
|
return input_ids, image_bounds, audio_bounds, spk_bounds
|
|
|
|
def _convert_omni_to_inputs(
|
|
self,
|
|
images,
|
|
audio_phs,
|
|
texts: Union[str, List[str]],
|
|
truncation=None,
|
|
max_length=None,
|
|
max_slice_nums=None,
|
|
use_image_id=None,
|
|
return_tensors=None,
|
|
**kwargs,
|
|
):
|
|
if images is None and audio_phs is None:
|
|
model_inputs = self.tokenizer(
|
|
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
|
|
)
|
|
return MiniCPMOBatchFeature(data={**model_inputs})
|
|
|
|
image_tag = "(<image>./</image>)"
|
|
image_pattern = "\(<image>./</image>\)"
|
|
audio_tag = "(<audio>./</audio>)"
|
|
audio_pattern = "\(<audio>./</audio>\)"
|
|
split_pattern = f"({image_pattern}|{audio_pattern})"
|
|
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
|
|
bs = len(texts)
|
|
if images is not None:
|
|
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
|
|
else:
|
|
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs
|
|
|
|
input_ids_list = []
|
|
image_bounds_list = []
|
|
audio_bounds_list = []
|
|
spk_bounds_list = []
|
|
|
|
for index, text in enumerate(texts):
|
|
text_chunks = re.split(split_pattern, text)
|
|
|
|
image_tags = re.findall(image_pattern, text)
|
|
audio_tags = re.findall(audio_pattern, text)
|
|
|
|
if image_tags:
|
|
assert images is not None
|
|
assert len(image_tags) == len(image_sizes[index])
|
|
if audio_tags:
|
|
assert audio_phs is not None
|
|
assert len(audio_tags) == len(audio_phs[index])
|
|
|
|
image_id = 0
|
|
audio_id = 0
|
|
for i, chunk in enumerate(text_chunks):
|
|
if chunk == image_tag:
|
|
image_placeholder = self.image_processor.get_slice_image_placeholder(
|
|
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
|
|
)
|
|
image_id += 1
|
|
text_chunks[i] = image_placeholder
|
|
elif chunk == audio_tag:
|
|
audio_placeholder = audio_phs[index][audio_id]
|
|
audio_id += 1
|
|
text_chunks[i] = audio_placeholder
|
|
|
|
final_text = "".join(text_chunks)
|
|
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)
|
|
|
|
input_ids_list.append(input_ids)
|
|
image_bounds_list.append(image_bounds)
|
|
audio_bounds_list.append(audio_bounds)
|
|
spk_bounds_list.append(spk_bounds)
|
|
|
|
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
|
|
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
|
|
for i, length in enumerate(padding_lengths):
|
|
image_bounds_list[i] = image_bounds_list[i] + length
|
|
audio_bounds_list[i] = audio_bounds_list[i] + length
|
|
spk_bounds_list[i] = spk_bounds_list[i] + length
|
|
attention_mask[i, :length] = False
|
|
|
|
data = {
|
|
"input_ids": padded_input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": images,
|
|
"image_sizes": image_sizes,
|
|
"image_bound": image_bounds_list,
|
|
"tgt_sizes": tgt_sizes,
|
|
"audio_bounds": audio_bounds_list,
|
|
"spk_bounds": spk_bounds_list,
|
|
}
|
|
|
|
return data
|
|
|
|
@property
|
|
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
feature_extractor_input_names = self.feature_extractor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))
|
|
|
|
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
|
|
items = []
|
|
if isinstance(inputs[0], list):
|
|
assert isinstance(inputs[0][0], torch.Tensor)
|
|
for it in inputs:
|
|
for tr in it:
|
|
items.append(tr)
|
|
else:
|
|
assert isinstance(inputs[0], torch.Tensor)
|
|
items = inputs
|
|
|
|
batch_size = len(items)
|
|
shape = items[0].shape
|
|
dim = len(shape)
|
|
assert dim <= 2
|
|
if max_length is None:
|
|
max_length = 0
|
|
max_length = max(max_length, max(item.shape[-1] for item in items))
|
|
min_length = min(item.shape[-1] for item in items)
|
|
dtype = items[0].dtype
|
|
|
|
if dim == 0:
|
|
return torch.stack([item for item in items], dim=0), [0]
|
|
elif dim == 1:
|
|
if max_length == min_length:
|
|
return torch.stack([item for item in items], dim=0), [0] * batch_size
|
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
|
else:
|
|
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
|
|
|
|
padding_length = []
|
|
for i, item in enumerate(items):
|
|
if dim == 1:
|
|
if padding_side == "left":
|
|
tensor[i, -len(item) :] = item.clone()
|
|
else:
|
|
tensor[i, : len(item)] = item.clone()
|
|
elif dim == 2:
|
|
if padding_side == "left":
|
|
tensor[i, -len(item) :, :] = item.clone()
|
|
else:
|
|
tensor[i, : len(item), :] = item.clone()
|
|
padding_length.append(tensor.shape[-1] - len(item))
|
|
|
|
return tensor, padding_length
|
|
|
|
|
|
class MelSpectrogramFeatures(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
sample_rate=24000,
|
|
n_fft=1024,
|
|
hop_length=256,
|
|
n_mels=100,
|
|
padding: Literal["center", "same"] = "center",
|
|
):
|
|
super().__init__()
|
|
if padding not in ["center", "same"]:
|
|
raise ValueError("Padding must be 'center' or 'same'.")
|
|
self.padding = padding
|
|
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
|
sample_rate=sample_rate,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
n_mels=n_mels,
|
|
center=padding == "center",
|
|
power=1,
|
|
)
|
|
|
|
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
audio: Tensor([num_channels, num_samples])
|
|
"""
|
|
return super().__call__(audio)
|
|
|
|
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
audio: Tensor([num_channels, num_samples])
|
|
"""
|
|
mel: torch.Tensor = self.mel_spec(audio)
|
|
features = torch.log(torch.clip(mel, min=1e-5))
|
|
return features
|
|
|
|
|
|
class ChatTTSProcessor:
|
|
def __init__(self, text_tokenizer):
|
|
self.audio_processor = MelSpectrogramFeatures()
|
|
self.text_tokenizer = text_tokenizer
|
|
|
|
def __call__(self, text_list, audio_list):
|
|
assert len(text_list) == len(audio_list)
|
|
input_ids_varlen = []
|
|
for text in text_list:
|
|
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len]
|
|
input_ids_ = input_ids_.squeeze(0) # [seq_len]
|
|
input_ids_varlen.append(input_ids_)
|
|
|
|
audio_features_varlen = []
|
|
for audio in audio_list:
|
|
assert audio.shape.__len__() == 1 # [seq_len]
|
|
try:
|
|
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
|
|
except Exception as e:
|
|
raise e
|
|
audio_features_varlen.append(mel)
|
|
|
|
return {
|
|
"tts_input_ids_varlen": input_ids_varlen, # return List[Tensor]
|
|
"tts_input_features_varlen": audio_features_varlen, # return List[Tensor]
|
|
}
|